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[1] Biogeographic provinces are categories used for
comparing and contrasting biogeochemical processes and
biodiversity between ocean regions. Provinces provide a
framework for reasonable extrapolation of point or transect
data to broader areas. However, their use is limited due to the
non-automatic, subjective nature of province classification.
Furthermore, it is unknown how province boundaries
respond to seasonal and climate forcing. These issues
make province related hypotheses difficult to test with
static provinces. To solve this problem, we use objective
classification on global remote sensing data to automatically
produce time and space resolved ocean provinces. Seasonal
patterns in province geography reflect well-known ocean
processes. Our predictions of province boundaries are
verified by in-situ ship track data and province
distributions in the equatorial Pacific correlate well with
ENSO indexes. This objective classification system captures
spatial and temporal province dynamics and provides
objective categories for cross-province biogeochemical
hypotheses to be rigorously tested. Citation: Oliver, M. J.,

and A. J. Irwin (2008), Objective global ocean biogeographic

provinces, Geophys. Res. Lett., 35, L15601, doi:10.1029/

2008GL034238.

1. Introduction

[2] Physical and biological forces interact in the sea to
create a complex emergent seascape commonly character-
ized by conservative (temperature and salinity) and non-
conservative (ocean color and nutrient concentration)
properties. Despite this complexity and rich structure,
oceanographers have recognized the existence of distinct
biogeographic provinces in the oceans [Barber, 1988;
Hooker et al., 2000; Longhurst et al., 1995; Longhurst,
1998; McGowan, 1971; Ottens, 1991; Sverdrup et al.,
1942]. The province concept has provided a framework to
spatially aggregate or separate data for comparisons of
biogeochemical processes over broad regions of the global
ocean. Province designations have been used to analyze
global distributions of primary productivity, DMSP fluxes,
distributions of pelagic flora and fauna, and other biogeo-
chemically important parameters [Angel et al., 2007; Boyd
and Doney, 2003; Ducklow, 2003]. Waniek et al. [2005]
found that province specific limitations of primary produc-
tion in the euphotic zone were good predictors of particle

flux measured by sediment traps in three northeast Atlantic
provinces. Boyd and Doney [2003] and Ducklow [2003]
used the Longhurstian province concept to analyze JGOFS
biogeochemical fluxes and to describe regime shifts in
ecological community structure. However, both of these
studies suggest that understanding the temporal dynamics of
province boundaries would be beneficial in estimating
trends in ocean biogeochemistry. Longhurst [1998] empha-
sized that province boundaries he produced are not fixed in
space and time and merely represent the mean location of
provinces. To actually locate the boundaries between
provinces in space and time requires that provinces be
defined by features that can be synoptically observed from
earth-orbiting remote sensors and that objective automatic
methods be developed to analyze this voluminous data.
Complicated spatial patterns in province boundaries are likely
to be present on small as well as large scales. Automatic
methods should be able to identify features missed by
global analyses such as Longhurst’s.
[3] Many of the predictors used to define provinces are

correlated to satellite observations. Mixed layer depth,
Brunt-Väisäläa frequency, Rossby radius of deformation,
and nutrient fields are all significantly and strongly corre-
lated to sea surface temperature (SST) on a global scale.
Water column integrated chlorophyll concentrations, photic
depth, and nutrient fields are also significantly and strongly
correlated to ocean color. Therefore, the global time series
of satellite ocean color and sea surface temperature provide
a significant amount of discrimination power for determin-
ing the locations of biogeographic provinces [Esaias et al.,
2000]. In this study we adapt and extend the bioinformatic
approach of Oliver et al. [2004]. We use satellite measured
sea surface temperature and ocean color radiance data to
objectively identify biogeographic provinces without having
a priori knowledge of the number of biogeographic prov-
inces present. If our approach is able to effectively detect the
spatial and temporal dynamics of Longhurstian biogeo-
graphical provinces, we would expect three clear patterns
to emerge from our analysis. First, we expect province
patterns to emerge in our analysis that are similar to
province patterns previously described by Longhurst.
Second, we expect that in-situ data would verify the location
of predicted boundaries between provinces. Third, we
expect predicted biogeographic provinces to recognizably
respond spatially and temporally to well-known climate
forces such as the El Niño southern oscillation (ENSO).

2. Materials and Methods

2.1. Satellite Data Sources

[4] The satellite data we used to classify global biogeo-
graphical provinces were normalized water leaving radiance
at 443 nm (nLw443), nLw551, and 11 m daytime SST derived
fromNASA’sMODIS/Aqua instrument. Monthly and annual
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means from 2003–2006 were used as provided by the ocean
color processing team (G. C. Feldman and C. R. McClain,
Ocean Color Web, MODIS/Aqua Reprocessing 1.1, 2007,
available at http://oceancolor.gsfc.nasa.gov/REPROCESSING/
Aqua/1.1/). We used level-3 binned data processed with
SeaDAS (http://oceancolor.gsfc.nasa.gov/seadas/) to a cylin-
drical grid of 36 km resolution at the equator. There are a
host of satellite derived products that could be used as
predictors of biogeographical provinces. We focused on
the predictors that describe the majority of the variation in
the satellite signal. A principal component analysis of
MODIS radiance channels and SST revealed that three
components account for 95% of the variance in the MODIS
data set, and that nLw443, nLw551, and 11 m daytime SST
were the major contributors to those three components.

2.2. Classification Algorithm

[5] Fundamental to specifying discrete biogeographic
provinces is the task of transforming continuous observations
(SSTand ocean color) into discrete classes (provinces).Many
methods require either subjective expert decisions or exten-
sive training data with a priori known classifications
[Devred et al., 2007; Longhurst, 1998]; however, whatever
theoretical progress is gained with a priori expert skill is
lost pragmatically because expert skill does not lend itself to
automation. We use an objective criterion to determine the
number of classes; when our statistic reaches a threshold,
we stop creating more province classes.
[6] In this study, we divide a global ocean, four-year time

series of MODIS/Aqua data with monthly resolution into
provinces automatically using an objective statistic. To do
this, we simplify and automate a classification technique
used earlier in a regional study [Oliver et al., 2004]. This
classification technique is modeled after bioinformatic clus-
tering algorithms that are used to decide how the continuum
of genetic sequences ought to be broken up into distinct
classes (species) without a priori knowledge of the number
of classes [Yeung et al., 2001]. The essence of the algorithm
is to standardize the SST and ocean color data to zero mean
and unit variance (Table S11), calculate standardized Eu-
clidean distance matrices in predictor space (SST, nLw443,
and nLw551), then use clustering algorithms to divide the
data into classes. As classes are specified, a Figure of Merit
(which is similar in form to an RMS error) quantifies how
well each class centroid predicts all other members of the
class. Classification is halted when adding additional classes
to the data set does not improve the ability of the class
centroids to predict all other members of their classes
[Oliver et al., 2004].
[7] The full method is described by Oliver et al. [2004]

with the following modifications. We reduced the number of
clustering algorithms to two (Ward’s linkage agglomerative
clustering [Ward, 1963] and K-means divisive clustering
[Hartigan and Wong, 1979]). These algorithms represent
two major approaches to cluster analysis, which can
isolate distinct features in data and are complementary
in this application. We used the stats package in the
computer program R to implement these clustering algo-
rithms [R Development Core Team, 2006]. Clustering

algorithms use distance matrices in their calculations
which require storage proportional to the square of the
number of data points to be analyzed. A single MODIS
global image at 36 km resolution contains more than 105

points, making clustering of all data infeasible. Our solution
is to cluster a small subset of the data (12,000 points),
sampled uniformly in the temporal domain, but skewed
more heavily toward the coast in the spatial domain
(Figure S1) since we expect a large amount of the variance
in the satellite data set to be concentrated in shallow water.
Every data point in the full-resolution images was subse-
quently classified according to the cluster label of the
nearest point (in predictor, not geographic, space) in the
sample. A single classification of the sampled data into
province types is used to ensure consistent labels over the
entire time-series. The resulting classes are then mapped.
The same class is often mapped in many non-contiguous
locations. The two clustering algorithms produce separate
maps of province distributions that are overlaid into a single
province map.

2.3. Province Boundaries

[8] Province boundary locations show the spatial and
temporal extent of a given province and geographically
distinguish one province from the next. In addition to
province boundary location, we estimated the relative
strength of the boundaries between provinces. Gradients
between adjacent provinces were computed along bound-
aries as the Euclidean distance between standardized SST,
nLw443 and nLw551 averaged over the adjoining provinces.
The greater the difference between the mean predictors in
neighboring provinces, the stronger the boundary between
them. The boundary strength was mapped as quartiles over
a grayscale to increase contrast and aid in identification of
the strongest boundaries (Figure 2).

2.4. Boundary Validation

[9] We verified province boundary locations predicted by
this analysis by overlaying independent in-situ ship tracks
of salinity and density on boundary maps computed from
monthly means of MODIS/Aqua imagery. The three
sources of ship-track data we used were from the Integrated
Science Data Management branch of Canada’s Federal
Department of Fisheries and Oceans (www.meds-sdmm.
dfo-mpo.gc.ca), the Coriolis project for operational ocean-
ography (www.coriolis.eu.org/cdc/tsg_and_buoy_data.htm),
and the National Oceanic and Atmospheric Administration,
Atlantic Oceanographic and Meteorological Laboratory
(www.aoml. noaa.gov/phod/tsg/index.php). Some mismatch
was anticipated since the cluster boundaries were drawn
from monthly average data and compared with instanta-
neous in situ observations.

2.5. ENSO Indexes

[10] To determine if provinces were responding to well-
known climate forces, we correlated equatorial province
areas with three different indexes of ENSO. We computed
the area of the dominant provinces corresponding to the
equatorial upwelling within the region bounded by 10�S,
10�N, 165�E, and 110�W. The three sources of ENSO
indexes we used were the Southern Oscillation Index

1Auxiliary materials are available in the HTML. doi:10.1029/
2008GL034238.
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(SOI) (www.cpc.ncep.noaa.gov/data/indices/reqsoi.for),
the Multivariate ENSO Index (MEI) (www.cdc.noaa.gov/
people/klaus.wolter/MEI/table.html) and the Oceanic Nino
Index (ONI) (www.cpc.noaa.gov/products/analysis_monitoring/
ensostuff/ensoyears.shtml).

3. Results and Discussion

3.1. Global Biome Distribution

[11] The global scale biogeographic provinces predicted
by our analysis of 2006MODIS/Aqua average data (Figure 1)
reflect many well-known large scale hydrographic features.
These include the five major ocean gyres, the equatorial
upwelling zone, western boundary currents such as the Gulf
Stream and Kuroshio, and large river plumes from the
Amazon and Congo Rivers. Our ocean province classes span
ocean basins and hemispheres; which is different than the
location specific province descriptions described previously.
In the work presented here, same province types that are not
geographically connected would be considered different
provinces. It is also important to note that Figure 1 reflects
only the average signal, and that many oceanographic fea-
tures such as river plumes that exhibit strong seasonal and
inter-annual variability are better described in the time
resolved Animation S1. The general topology of Longhurst’s
classification is reproduced by our analysis, including many
of the dominant and regional provinces, e.g., the North
Atlantic Gyral (NATR), Caribbean (CARB), Atlantic Arctic
(ARCT), Canary Coastal (CNRY), South Atlantic Gyral
(SATL), Southwest Atlantic Shelves (FKLD), Benguela
Current Coastal (BENG), Red Sea, Persian Gulf (REDS),
Northwestern Arabian Upwelling (ARAB), California
Current (CALC), Pacific Equatorial Divergence (PEQD),
and the South Pacific Subtropical Gyre (SPSG). What is

critical here is that these regions have been automatically
and objectively detected without knowing the number of
provinces present a priori. This represents a significant
advance over province algorithms that require the number
of provinces to be imposed on the data, rather than the data
dictating the number of provinces [Devred et al., 2007].
Many of our boundaries are irregular compared to Long-
hurst’s boundaries. Our provinces commonly intrude into
their neighbors with small isolated patches or cyclonic
fingers. Some regions, such as the Southern Ocean and
North Pacific show extensive heterogeneity in our analysis
which may reflect a higher level of provincial discrimination
or be a consequence of remote sensing sampling bias due to
frequent and irregular cloud cover. Our automatic classifi-
cation identifies 81 province types, of which 17 account for
the vast majority of the global ocean. This classification is
based on simple observational data (temperature and ocean
radiance) as opposed to parameters such as chlorophyll that
are derived from complex empirical algorithms.

3.2. In-situ Verification of Province Boundaries

[12] While our analysis is in good agreement with his-
torically recognized ocean provinces, the key advantage of
our approach is the elucidation of temporal trends in
province boundaries (Animation S1). A province boundary
implies a difference in hydrography between two provinces.
In this study, we used ship-of-opportunity transects to verify
province boundary locations. We overlaid salinity and
density ship-of-opportunity transects on province bound-
aries derived from monthly averaged MODIS imagery.
Boundaries were divided into quartiles by their strength
with the darkest boundaries representing the strongest
boundaries. Salinity and density are technically independent
of the satellite data we used in the algorithm; however,

Figure 1. Objective global ocean biogeographic provinces determined from MODIS/Aqua 2006 annual average data.
Colors identify distinct classifications (province types) and do not represent the value of any of the predictor variables.
White boxes indicate regions used to verify province boundaries with ship-track data in Figure 2. Equatorial provinces
identified with a white triangle are further analyzed in Figure 3.
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satellite data contain partial salinity and density information
because temperature is needed to compute both salinity and
density from a CTD. Figure 2 shows examples of these
hydrographic overlays from a western boundary region, a
gyre, a marginal sea, and an equatorial region. Figures S2–
S16 show the same regions as Figure 2, but at different
times with different province boundary locations. In general,
changes in hydrographic measurements are co-located with
boundary locations on multiple spatial scales. Slight mis-
matches in boundary location are likely due to overlaying
instantaneous ship track information on province bound-
aries derived from monthly averaged MODIS imagery. Our
technique has a difficult time deriving boundaries where

hydrographic data show a very smooth transition over large
space scales such as in the salinity data in the South Pacific
Gyre (Figure 2). In this particular case, density measured in
this same transect was nearly uniform across the gyre
(Figure S16). However, since the purpose of our approach
is to force continuous ocean data into classes, it is not
surprising that in areas where hydrographic transitions are
extremely smooth the approach does not do well.

3.3. Province Response to Climate Forcing

[13] The time series of monthly province geographic
distributions (Jan 2003 to December 2006, Animation S1)
documents the dramatic temporal variation in location and
size of biogeographic provinces. Large-scale seasonal oscil-

Figure 2. In situ salinity and density transects (colored lines) overlaid on maps of province boundaries in selected regions
of the global ocean (Figure 1). Grey lines are province boundaries, with shading determined by the strength of the gradient
of standardized SST and water leaving radiances and indicated by the grayscale bar legend. Darkest boundaries are the
strongest boundaries. Colored lines are salinity or density indicated by color bar on each plot. Solid arrows highlight areas
of boundaries consistent between in situ data and province analysis. Open arrows indicate a few locations where gradients
in in situ data are not reflected in province boundaries.

L15601 OLIVER AND IRWIN: OCEAN BIOGEOGRAPHIC PROVINCES L15601

4 of 6



lations in province location, movements of eddies, and
current meanders are identified easily in this dynamic
presentation. One of the most striking visual patterns is
the inter-annual oscillation pattern of provinces in the
equatorial Pacific. The areas of the three provinces coinci-
dent with the El Niño phenomenon (identified with triangles
in Figure 1) oscillate together with three indexes of ENSO
(Figure 3). A one-month time lag of province area shows
the strongest correlation with these three indexes (r2 = 0.45,
0.58, 0.58 for SOI, MEI, and ONI, respectively). The strong
correlations indicate that provinces are responding spatially
and temporally to multi-annual climate forces. The one
month time lag in maximum correlation also suggests
biogeographic provinces respond relatively quickly to
ENSO forces. This confirms that methods we are using in
this analysis are not masking well-known climate forces.

4. Conclusion

[14] We described a simple objective automatic method
based on remote sensed data for discriminating global ocean
biogeographic provinces that are supported by three major
forms of evidence. First, our annual average province
distributions generally conform to province distributions
previously described. This shows that much of the infor-
mation needed to discriminate ocean provinces is contained
in the satellite data streams. Second, province boundary

locations are supported by independent in-situ observations
of hydrography from a wide range of oceanic environments.
This verification supports our method and predicted province
locations, and demonstrates that we can dynamically and
quantitatively identify provinces. Third, temporal changes
in province areas appear to be tightly coupled to major
climate forces in the global ocean as the area of key
equatorial Pacific provinces track ENSO indexes with a
lag of one month. This shows provinces to be dynamic
reporters of climate conditions and allows them to be used
as diagnostic factors for climate change.
[15] One of the main advantages for specifying ocean

provinces is that it enhances comparative analysis of ocean
processes and attributes such as carbon flux and chlorophyll
concentrations. Hypotheses about the differential effects of
climate change on biogeochemical fluxes or biodiversity
could be simply tested across different province types with
comparative methods. However, the validity of comparative
statistical tests is compromised if the class identities are
uncertain. If provinces in a region of interest are highly
spatially and temporally dynamic, the results of cross-
province comparative methods could be due to simple
mis-classification of province type, thus not reflecting any
real difference between provinces. Misclassification of
province type would lead to both type 1 and type 2 errors.
To guard against these errors, cross province comparisons
have been generally restricted to global scale climatological
studies near province centers to ensure that uncertainties
about province edges did not affect the results of the
comparison [Ducklow, 2003]. Our approach solves this
issue by producing objective and time-resolved provinces,
allowing for oceanographic experiments of both global and
local scales and experiments in regions where provinces are
highly dynamic to use simple cross-province comparative
methods. These results are a step toward understanding how
ocean provinces and the species that are contained within
them are altered in space and time. Having an objective and
automatic approach to province detection provides a stan-
dard metric for planning and analyzing oceanographic
studies in an ever-changing seascape.
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