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1. Introduction

Fluctuations in population abundance or biomass within 
ecological communities result from a complex interplay of 
abiotic and biotic factors combined with demographic sto-
chasticity or ecological drift (Lande et al. 2003, Loreau and 
de Mazancourt 2008, Mutshinda 2009, 2010). The abiotic 
factors involve environmental forcing  mediated by changing 
physical conditions (e.g., temperature) and/or fluctuations in 
the availability of non-living resources affecting the growth, 
reproduction and maintenance of organisms. The biotic forc- and maintenance of organisms. The biotic forc-maintenance of organisms. The biotic forc- biotic forc-
es include density-dependent feedbacks and species-species 
interactions within and across trophic levels. Negative den-
sity dependent regulation is a pervasive feature of population 
growth processes (Nicholson 1933, Cooper 2003, Brook and 
Bradshaw 2006), and may result from competition for limit-
ing resources among conspecifics (intra-specific competition) 
or from other mechanisms operating in a density-dependent 
fashion such as predation and diseases. �emographic sto-�emographic sto-

chasticity refers to the variability in population growth re-
sulting from randomness in outcomes of demographic events 
(births, deaths, dispersal) across individuals in a finite popu-
lation (Lande et al. 2003).

Community dynamics models that integrate these various 
sources of variability enable better understanding of the caus-understanding of the caus-
es of shifts in community structure and allow sensible predic-and allow sensible predic-
tions of community responses to environmental fluctuations. 
So far, models concerned with ecological responses to envi-odels concerned with ecological responses to envi-
ronmental changes have mostly focused on abiotic forcing 
with less regard to biotic interactions (Gilman et al. 2010). 
However, there is an emerging consensus among ecologists 
on the major role of biotic interactions in structuring eco-
logical communities and modulating population responses to 
climate change (e.g., �avis et al. 1998a,b, Araujo and Luoto 
2007, Heikkinen et al. 2007, Gilman et al. 2010, Götzenberger 
et al. 2012). �et, the modelling and �uantifi cation of biotic in-). �et, the modelling and �uantifi cation of biotic in-. �et, the modelling and �uantifi cation of biotic in- �uantification of biotic in-
teractions is challenging, particularly for species-rich systems 
such as microbial or planktonic assemblages due to the huge 
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number of potential interactions between species (Ovaskainen 
et al. 2017), raising the curse of dimensionality as the number 
of pairwise interactions increases exponentially with the num-
ber  of populations under consideration. As a result, commu-commu-
nity dynamics models, typically vector autoregressive models 
(VAR) models models, are often restricted to a few popula- models, are often restricted to a few popula- are often restricted to a few popula-
tions. VAR models, which extend univariate autoregressive 
(AR) models to multivariate time series, provide a flexible 
framework for analyzing the joint dynamics of co-occurring 
populations and evaluating, from observational time series, the 
biotic, abiotic, and stochastic factors drivers of population dy-
namics and community structure (Ives et al. 2003, Mutshinda 
et al. 2009, 2011, Hampton et al. 2013). A VAR model of or-
der p, denoted as  treats each endogenous variable as a linear 
function of its own p lags and the lags of all other endogenous 
variables in the system. VAR models of any order p > 1 can be 
rewritten in the  form, which is more convenient for analytical 
operations. Underlying autoregressive models of order 1 is the 
assumption that the future is independent of the past given the 
present, known as the Markov property.

VAR models of species-rich assemblages typically require 
some kind of complexity reduction to overcome the curse of 
dimensionality resulting from the huge number of param-
eters, particularly the inter-specific interactions coefficients 
(e.g., Ovaskainen et al. 2010, Pollock et al. 2014, Clark et 
al. 2018). Kissling et al. (2012) review complexity reduction 
techniques for modelling biotic interactions in species-rich 
assemblages, separating them into statistical and ecological 
methods. Statistical methods for complexity reduction hinge 
essentially on the assumption that weak interactions prevail 
in natural communities (Mutshinda et al. 2009, 2011) and 
accordingly, attempt to produce a sparse interaction matrix 
by resorting to sparsity-inducing methods. In the Bayesian 
framework (McCarthy 2007, Gelman et al. 2013), sparsity-
inducing methods can be categorized into indicator-based 
variable selection methods and regularization or shrinkage 
techniques. Indicator-based variable selection techniques 
(e.g., George and McCulloch 1993) achieve sparsity by ex-George and McCulloch 1993) achieve sparsity by ex-) achieve sparsity by ex-
cluding the redundant predictors from the model. On the oth-
er hand, regularization methods (e.g., Park and Casella. 2008, 
Mutshinda and Sillanpää 2010, 2011, 2012) keep all potential 
predictors in the model, but impose a penalty constraining the 
magnitudes of their coefficients to shrink towards zero, caus-
ing the effects of redundant predictors to be zero or nearly 
so and virtually excluding such predictors from the model. 
The most popular regularization methods are the LASSO 
(Tibshirani 1996) and ridge regression (Hoerl and Kennard 
1970) which constrain the L1 and L2 norm of the coefficient 
vectors, respectively. Because of its ability to set some of 
the coefficients exactly to zero, the LASSO is increasingly 
popular as a variable selection tool.  We refer to O’Hara and 
Sillanpää (2009) for an extensive review of Bayesian variable 
selection methods. The rationale of ecological methods for 
complexity reduction is to aggregate the plethora of species 
under consideration in a few biologically meaningful groups 
such as organismal taxonomic units or functional types, and 
focus on group-level data. This is pragmatic since it is much 
easier to deal with a handful of groups than many individual 

species. In addition, species-level data are usually fraught with 
missing values. The aggregation of species into a few biologi-
cally meaningful groups may also be required by the question 
being addressed. For instance, when designing models for 
predicting phytoplankton biomass or characterizing traits, it 
is useful to aggregate the host of species into functional types 
based on distinctive ecological functionality or chemical roles, 
which are sensible proxies for ecological and biogeochemical 
functions (Le Quéré et al. 2005, Irwin and Finkel 2018).

In this paper, we develop a Bayesian model for evaluat-a Bayesian model for evaluat-
ing, from long-term monitoring data, the factors and mecha-
nisms underlying the structure and dynamics of species-rich 
communities, focusing on the joint biomass dynamics of 
biologically meaningful groups. We parameterize a multi- parameterize a multi-
variate model of group biomass co-variation integrating de-
mographic stochasticity, density-dependent effects, pairwise 
interactions, and abiotic stress mediated by changing envi-
ronmental conditions and limiting resources. We devise for-
mulae for partitioning the temporal variance in log-biomass 
growth of each group in its biotic, abiotic and stochastic com-
ponents. We illustrate the method by analyzing the joint bio-
mass dynamics of four major phytoplankton functional types 
namely, diatoms, dinofl agellates, coccolithophores and phy-diatoms, dinoflagellates, coccolithophores and phy-
toflagellates using long-term data recorded at Station L4 in 
the Western English Channel as part of the Western Channel 
Observatory oceanographic time series (Widdicombe et al. 
2010a,b). The data involve weekly biomass concentrations 
of the four functional types and coincident measurements 
of five environmental covariates. Two of the environmental 
covariates (temperature and salinity) describe environmental 
conditions whereas the other three (irradiance, nitrogen, and 
silicate) represent potentially and limiting resources.

2. Materials and methods 

In the sequel, boldface lower-case letters and boldface 
capital letters represent vectors and matrices, respectively. 

2.1. Model specification

We describe the biomass dynamics of each taxonomic 
group by a stochastic Gompertz model extended to incorporate 
pairwise interactions and external forcing mediated by chang-
ing environmental conditions (temperature or salinity) and 
potentially limiting abiotic resources (irradiance, nitrogen, and 
silicate). The separation of environmental covariates into envi-
ronmental conditions and limiting resources is important since 
they enter the model differently. Henceforth, we refer to the co-
variates describing environmental conditions as environmental 
conditions. Let Yi,t and Xq,t denote respectively, the biomass of 
the ith taxonomic group (i = 1,..., n)  and the Z-score of the qth 
environmental condition at time t (t ≥ 2). We assume that
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where ri,t > 0 denotes the density-independent growth rate 
of the ith group from time t–1 to t at average environmental 
conditions, bi,q represents the effect of the qth environmen-
tal condition (temperature or salinity) on the ith group, and 
ei,t is a zero-mean random disturbance affecting the biomass 
dynamics of the ith group at t. The interaction coefficient ai,j 
(i ≠ j)  represents the effect of the jth group’s biomass on the 
growth rate of the ith group, relative to the effect of the ith 
group’s biomass on its own growth rate. The scaling factor ki 
> 0 is the carrying capacity of the ith group’s log-biomass. We 
set all intraspecific interaction coefficients ai,i  to –1 for iden-
tifiability purposes. In its typical form, the Gompertz model 
has a minus sign in front of the density-dependent term  

appearing in the exponent of equation (1), with all intra-
specific interaction coefficients ai,i set to 1 (Mutshinda et 
al. 2009, 2011). Here we use a positive sign instead so that 
negative and positive coefficients portray detrimental and 
beneficial impacts respectively, hence the choice of –1 for the 
intraspecific coefficients. Depending on its sign and magni-
tude, the inter-specific interaction can be detrimental to both 
participants (competition), detrimental to one and beneficial 
to the other (exploitation or antagonism), detrimental to one 
without cost or benefit to the other (amensalism), of no ef-
fect to either participant (neutralism), or beneficial to at least 
one of the participants with no harm to either (facilitation). 
Facilitation can take the form of mutualism if both partici-
pants benefit or commensalism when it only benefits one of 
them (Stachowicz 2001).

For purposes of estimating the model parameters, it is 
convenient to work on a logarithmic scale. Re-writing (1) on 
the natural logarithmic scale with yi,t representing the natural 
logarithm of  Yi,t yields

�enoting the change (growth) yi,t – yi,t–1  in the log bio-log bio-
mass of the ith group from time t – 1 to t by Dyi,t, it follows 
from (2) by direct differentiation and re-arranging of terms 
that             

 

Conse�uently, the inter-specific interaction coefficient ai,j 
�uantifies the effect of group j on the growth rate of group 
i, relative to the (negative) feedback ∂Dyi,t/∂yi,t–1 of the ith 
group’s biomass on its own growth rate from time t – 1 to t, 
whose magnitude is hi,t = ri,t|ai,i|/ki or simply ri,t/ki since |ai,i| 
= 1 by design.

In compact matrix notation, the joint dynamics model (2) 
for a n-group system reads
yt = yt – 1 + R (1n + Ayt –1) + ß xt + et              (4)

where yt = (yi,t, ..., yn,t)T and xt = (X1,t, ..., XQ,t)T denote respec-denote respec-
tively the n-vector of group-level log-biomasses and the Q–
vector of Z-scores of the environmental conditions at time t, R 
is the n×n diagonal matrix with R(i,i) = ri, 1n is the n-vector of 
ones, A is the n×n matrix with (i,j)th entry Ai,j = ai,j/ki, ß is the 
n×Q matrix with ith row (bi,1, ..., bi,Q), and et = (e1,t, ..., en,t) 
is the n-vector of zero-mean random disturbances affecting 
the biomass dynamics of the n groups at time t. We assume 
that the error vectors et (t ≥ 2) are serially independent, but 
allow the contemporaneous components e1,t, ..., en,t of et to co-
vary, so that we can evaluate potential dependencies among 
groups that the involved covariates may not capture. More 
specifically, we assume that each et is multi-normally distrib-
uted around the n-dimensional zero vector with a potentially 
non-diagonal covariance matrix Vt. The residual variances 
(the diagonal entries of Vt) lump together the group-specific 
variances due to potentially important covariates that may be 
omitted from the model with demographic stochasticity and 
sampling error. �emographic stochasticity can be extracted 
by capitalizing on its inverse scaling with the population size 
or biomass. If we assume that sampling variation is negligi-
ble, then we can decompose the residual covariance matrix as
Vt = Dt + C                     (5)
where Dt is a n×n time-dependent diagonal matrix, with 
Dt(i,i) = di/Yi,t–1 representing the demographic stochasticity 
affecting the biomass dynamics of the ith group from time 
t – 1 to t, and di > 0 denoting the demographic variance pa-
rameter specific to the ith group. �ue to its inverse scaling 
with the population size or biomass, demographic stochastic-the population size or biomass, demographic stochastic-demographic stochastic-
ity is only relevant for small populations (e.g., Saether et al. 
2000, Lande et al. 2003, Mutshinda et al. 2009, 2011). The 
second component of Vt is the n×n time-independent residual 
environmental covariance matrix C  whose diagonal elements  
Ci,i, and off diagonal elements Ci,j (i ≠ j)  represent respec-
tively the group-specific and joint responses to un-modelled 
environmental factors.

Resource limitation to the growth of individual groups 
is not explicit in the model described by equations (1) and 
(2), but is potentially important. To facilitate the variance de-
composition analysis, we consider two different versions of 
the model namely, a reduced model represented by equations 
(1) and (2) with ri,t = ri (independently of time), and a full 
model involving an explicit account of resource limitation. In 
the full model, we incorporate resource limitation by letting 
ri,t = mifi(t), where mi > 0 is the maximum net growth rate of 
the ith group from one time to the next at average environ-
mental conditions (temperature and salinity) and optimal re-
source combination, and fi(t) is a suitable saturation function 
with 0 < fi(t) ≤ 1. The most common form of growth limiting 
term is the Michaelis-Menten saturation function also called 
the Monod or hyperbolic equation (Irwin and Finkel 2018). 
When considering under this form of growth limitation a sin-
gle limiting resource P taking the value Pt at time t, fi(t) is 
simply the Michaelis-Menten term Pt/(KPi + Pt), where  KPi  
> 0 denotes the resource half-saturation constant represent-denotes the resource half-saturation constant represent-
ing the resource level at which ri,t = mi/2. When dealing with 
more than one limiting resource, there are different ways of 
modelling co-limitation. Here we combine Michaelis-Menten 
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vector with a potentially non-diagonal covariance matrix 𝑽�. The residual variances (the 168 

diagonal entries of  𝑽�) lump together the group-specific variances due to potentially important 169 

covariates that may be omitted from the model with demographic stochasticity and sampling 170 
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factors of the resources under consideration with the mini-
mum function so that each functional type grows at the rate 
permitted by the scarcest resource (the resource with the low-
est Michaelis-Menten term), according to Liebig’s law (de 
Baar 1994, van der Ploeg and Kirkham 1999).

2.2. Model fitting 

Since the joint posterior distribution of the model param-
eters is not available in closed-form, numerical algorithms such 
as MCMC samplers (Gilks et al. 1996) are required to simu-
late from it. MCMC allow one to simulate the parameter(s) 
of interest from the correct posterior distribution without the 
need to know its exact mathematical form. In practice, MCMC 
simulation is conveniently implemented using freely available 
software packages such as WinBUGS/OpenBUGS (Lunn et 
al. 2000, Thomas et al. 2006), JAGS (Plummer 2003), or Stan 
(Stan �evelopment Team 2018). These software packages re-
quire the analyst to specify the model in R-like code that the 
program uses to produce posterior MCMC samples according 
to the prescribed prior distribution and likelihood or sampling 
distribution of the data at hand.

2.3. Variance partitioning 

Based on the reduced model (2), the growth rate Dyi,t 
of the ith group can be expressed as a linear function of the 
lagged log-biomasses yj,t–1 of all populations and coincident 
values xt = (X1,t, ..., XQ,t) of the environmental conditions 
under consideration at time t, with Gaussian additive noise. 
This facilitates the decomposition of the temporal variance in 
log-biomass growth of each group into additive contributions 
from different components. Accordingly, we use the reduced 
model to partition the temporal variance in the log-biomass 
dynamics of individual types into contributions from biotic 
factors, abiotic forcing and demographic stochasticity. We 
then introduce resource limitation and evaluate its contribu-
tion to temporal variation in the log-biomasses of individual 
groups by the subsequent reduction of the diagonal entries of 
the residual environmental covariance matrix C (the group-
specific residual environmental variances).

Based on the reduced model where ri,t = ri, we decom-
pose the total variance Ti in the log-biomass growth of the ith 
group over the study period as Ti = Gi + Ei + Di, where Gi, Ei 
and Di,  and denote respectively the contributions of negative 
density feedback, environmental variability (including inter-
specific interactions), and demographic stochasticity. Letting  
yi represent the average log-biomass of the ith type over the 
study period, an estimate of demographic stochasticity in the 
log-biomass dynamics of the ith type at average log-biomass is 
                 

(6)

If we denote by ni the temporal variance in the log-biomass 
of the ith type over the study period, and by xq = (Xq,1, ..., 
Xq,T), then 

                                                     
                  (7)

                              
                 (8)

Since the forcing variables xq = (q = 1, ..., Q) are mean-cen-
tered and standardized to unit variance, the formula for Ei 
simplifies as
                 

(9)
  
From the above variance partitioning, it follows that the pro-
portion of temporal variation in the log-biomass growth of 
the ith group attributable to biotic factors (density-dependent 
regulation and pairwise interactions) is   
                  (10)

The proportion of temporal variance in the log-biomass 
growth of the ith group due to environmental variability (in-
cluding inter-specific interactions) is Ei/Ti. Similarly, the pro-
portion of temporal variance in the log-biomass growth of the 
ith group due to density-dependent regulation is Gi/Ti and, at 
the average log-biomass of the ith group, the proportion of 
temporal variance in the log-biomass growth of the ith type 
due to demographic stochasticity is Di/Ti. Alternatively, we 
can also separate the temporal variance in the log-biomass of 
the ith group excluding demographic stochasticity, (Ti – Di) in 
its abiotic and biotic components given by  

respectively. We can also decompose the biotic component 
of temporal variation in the log-biomass of the ith group into 
contributions Gi from density-dependence and  

from inter-specific interaction among types.

3. Application of the Bayesian model to the  
L4 phytoplankton community 

3.1. Background

Phytoplankton is a generic name for a highly diverse 
group of photosynthetic organisms found in the euphotic 
zone of aquatic environments. As the base of the marine food 
web, phytoplankton sustain most of the aquatic life from zoo-
plankton through fish to marine mammals (e.g., Doney 2006). 
They also play a critical role in global biogeochemical cycles, 
particularly in the global carbon cycle through the “biological 
pump”, which accounts for roughly half of the total carbon 
fixation on Earth (Field et al. 1998). Therefore, identifying 
the factors and mechanisms underlying phytoplankton bio-
mass dynamics and community structure and evaluating their 
relative importance is essential if we are to understand the 
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functioning of marine ecosystems and predict the structure 
of planktonic communities in a changing ocean (Irwin and 
Finkel 2018). Here we analyze the joint biomass dynamics of 
four major phytoplankton functional types namely, diatoms, 
dinoflagellates, coccolithophores and phytoflagellates using 
long-term monitoring data from a well-studied coastal station 
in the Western English Channel. 

3.2. Description of data

We consider weekly observations of taxonomically re-
solved phytoplankton biomass (mg C m–3), along with co-
extensive measurements of five environmental covariates 
recorded at 10 m depth in the upper mixed layer at Station L4 
(50° 15.00′N, 4° 13.02′W) as part of the long-term Western 
Channel Observatory oceanographic time series (Widdicombe 
et al. 2010a,b). The data cover the period spanning 14 April 
2003 through 31 �ecember 2009, a period over which all the 
re�uired data are available. Two of the five environmental 
variables under consideration namely, temperature (Temp, 
°C) and salinity (Sal, PSU) describe water conditions. The 
temperature values range from 7.5oC to 18.9oC with a mean 
value of 13oC, whereas all salinity values fall in a narrow 
range from 34.20 to 35.54 PSU with a mean value of 35.10 
PSU (Fig. 1). The other three variables, photosynthetic active 
radiation (PAR; ), nitrogen concentration (Nit, ) and silicate 
concentration () characterize resource availability. Time-
series plots of the five environmental variables at Station L4 
over the study period reveal strong seasonal fluctuations (Fig. 
1). Irradiance and temperature are highly correlated, but the 
two variables enter the model differently, which helps miti-
gate potential identifiability issues. 

Phytoplankton biomass concentrations were calcu-
lated using taxa-specific biovolumes that were converted 
to carbon according to the equations of Menden-�euer and 
Lessard (2000) (Widdicombe et al. 2010b). For the purpose 
of the present study, we aggregate the phytoplankton into 
four functional types namely, diatoms, dinoflagellates, coc-
colithophorids and phytoflagellates and show the temporal 
variability of the natural log of each type’s biomass in Figure 
2. Each group exhibits large variability both seasonally and 
inter-annually, with diatoms typically peaking in spring or 
early summer, while dinoflagellates are more common in 
summer. The coccolithophore biomass is highly variable and 
attributed to the dominance of the bloom-forming Emiliania 
huxleyi.  The phytoflagellates dominated (more than 50% of 
the biomass) by unidentified flagellates less than 5µm in di-
ameter show the least temporal variability relative to other 
functional types (Fig. 2).

3.3. Prior specification and model fitting 

Before completing the model specification with explicit 
statements of priors on all unknown quantities, it is worth 
mentioning the postulated form of resource co-limitation 
to the growth rates of individual functional types in the full 
model. Following Mutshinda et al. (2017), we assume that 
the realized density-independent and resource-limited growth 
rate of the ith functional type from week w –1 to  is given by 
ri,w = mifi(w), where mi > 0 is the maximum net growth rate of 
the ith functional type from one week to the next at average 
environmental conditions and optimal resource combination, 
and                    

                    (11) 
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Figure 1. Timeplots of the abiotic 
variables at Station L4 between 
April 2003 and �ecember 2009.
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where KEi > 0, KNi > 0 and KSi > 0 denote respectively the 
irradiance, nitrogen and silicate half-saturation constants rep-
resenting the level of each resource at which ri,w = mi/2, pro-
vided that none of the other resources is limiting. 

It is good practice to incorporate available information 
into the analysis by specifying informative prior distribu-
tions for some of the model parameters, which can greatly 
improve the estimation precision (�elean et al. 2013). Based 
on our previous experience with the L4 data (Mutshinda et 
al. 2016, 2017), we assign Gamma(6,4) priors to the intrinsic 
growth rates ri and the carrying capacity ki, and place inv-
Gamma(0.1, 0.1) priors on the group-specific demographic 
variance parameters di independently for i = 1, ..., 4.  We 
assume the interspecific interaction coefficients ai,j and the 
environmental effects bi,q to be a priori normally distributed 
around zero with respective variances fi,j and ri,q, where fi,j 
~ Exp(la) and ri,q ~ Exp(lb). A convenient prior for a covari-
ance matrix, which guaranteeing the positive-definiteness of 
the posterior, is the inverse-Wishart distribution (Gelman et 
al. 2013). We assign to the residual covariance matrix C  an 
inverse-Wishart prior distribution with scale matrix S = I4, the 
4×4 identity matrix, and 4 degrees of freedom select to be the 
smallest possible i.e., the rank of the scale matrix S, to con-
vey a lack of relevant prior information. The specification of 
the reduced model is completed with prior statements for the 
hyper-parameters la and lb, for which we assume the fairly 
uninformative Gamma(0.1, 0.1) priors independently.

We complete the specification of the full model with prior 
assumptions about the maximum net growth rates mi and the 
half-saturation constants for irradiance, nitrogen and silicate. 
Again, drawing on our previous experience with the L4 data, 
we assign Gamma(6,4) on the maximum net growth rates mi 
of each functional type and impose positively truncated nor-
mal priors N(15,100)I(0,∞) and N(0,0.01)I(0,∞) on the irra-
diance and nitrogen half-saturation constants for each func-
tional type, respectively. 

Silicate is an important limiting nutrient for diatoms, but 
it is unclear whether it is worth keeping as a covariate in 

models describing the biomass dynamics of the three other 
functional types. To find this out, we impose on the silicate 
half-saturation constants positively truncated normal mixture 
prior with a spike-and-slab structure (George and McCulloch 
1993) to implement variable selection. More specifically we 
assume that KSi ~ N(0,si)I(0,∞), where si = (1 – xi) * 0.001 + 
xi * 10, where xi ∈ [0,1] is the inclusion indicator taking the 
value one when silicate is required in the dynamics of the ith 
functional type and the value zero otherwise, whereas 0.001 
and 10 are the variances of the spike and the slab components 
of our mixture prior, respectively. We assign Bernoulli( 0.25)
priors independently on the silicate inclusion indicators xi and 
estimate them from the data alongside the other model param-
eters. We use MCMC to simulate, through OpenBUGS, from 
the joint posterior of the unknown quantities and base our 
inferences on posterior MCMC samples. We ran 10,000 itera-
tions of three parallel Markov chains following a burn-in pe-
riod of 4,000 iterations and thinned the post burn-in samples 
by a factor of 10. We assessed convergence of the Markov 
chains through visual inspection of traceplots and posterior 
autocorrelation plots. After about 2,000 iterations, the chains 
were mixing well, jumping freely around the parameter space. 
Accordingly, we set the burn-in period to 4,000.

3.4. Results 

We start by presenting the results of the reduced model 
without an explicit account for resource limitation. We then 
consider the full model to evaluate the proportion of temporal 
variance in the log-biomass dynamics of each phytoplankton 
functional type that is attributable to the incorporation of re-
source limitation. 
3.4.1. Results of the reduced model. The intrinsic growth 
rate (ri; week–1) represents the net density independent real-
ized growth rate of the ith functional type at average envi-
ronmental conditions over the time series (13oC and 35.10 
PSU). Aggregated together, diatoms have the highest intrinsic 
growth rate with a doubling time of 6 days, followed by phyto-
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at Station L4 over the study period 
on the natural logarithmic scale.
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flagellates and dinoflagellates with respective doubling times 
of 7 and 10 days. Coccolithophores have the lowest intrinsic 
growth rate, which is half the diatom intrinsic growth rate, 
with a doubling time of 12 days (Fig. 3a). Phytoflagellates 
have the highest carrying capacity (k) followed by diatoms 
and dinoflagellates, while coccolithophores have the lowest 
carrying capacity (Fig. 3b). The magnitude of the negative 
density feedback on each functional type’s growth rate, as 
measured by h = r/k, is strongest on coccolithophores and 
weakest on phytoflagellates (Fig. 3c). If we assume that the 
density-dependent losses are predominantly due to grazing, 
this result indicates a higher grazing vulnerability for coc-
colithophores as opposed to phytoflagellates, consistent with 
the finding of Mutshinda et al. (2017) that at Station L4, coc-at Station L4, coc-
colithophores undergo a strong control by both specialist and 
generalist grazers, when essentially only specialist grazers 
control the other three functional types.

The growth rates of diatoms and phytoflagellates are es-
sentially unresponsive to small changes in temperature and 
salinity around the average conditions (13oC and 35.10 PSU), 
whereas dinoflagellates and coccolithophores respond posi-
tively to increasing temperature and negatively to increasing 
salinity (Fig. 4). However, dinoflagellates are more respon-
sive than coccolithophores to changing water conditions with 
magnitudes of temperature and salinity effects roughly twice 
those of coccolithophores, implying faster dinoflagellate 
biomass accumulation at warmer temperatures, in line with 
earlier results found at this site (Widdicombe et al. 2010a, 
Mutshinda et al. 2017). The tight coupling between tempera-
ture and dinoflagellate biomass at L4 may explain the clear 
seasonal patterns in dinoflagellate log-biomass (Fig. 2). 

The posterior densities of the interaction coefficients  for 
pairs of functional types summarize the interactions between 
functional types (Fig. 5). 
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Nine of the twelve interspecific interaction coefficients 
have posterior means at least one standard deviation away 
from zero. Considering these as statistically important, our 
results demonstrate a variety of interaction mechanisms 
among the study functional types at Station L4 with a preva-
lence of facilitation (Table 1). 

The posterior means (standard deviations in parentheses) 
of the demographic variance parameter  for diatoms, dino-
flagellates, coccolithophores, and phytoflagellates are 0.47 
(0.13), 0.06 (0.01), 0.07 (0.01), and 0.43 (0.10), respectively. 

Overall, environmental variability, including the variabil-
ity due to changing temperature and salinity, inter-specific 
interactions and residual environmental variances account on 
average for 33 to 62% of temporal variation in the dynamics 

of individual functional types. �ensity-dependent feedbacks 
and demographic stochasticity account on average for 21 to 
56% and 4 to 20% of temporal variation in the dynamics of 
individual functional types, respectively (Fig. 6). 

If we exclude demographic stochasticity and consider the 
residual variation captured by the covariance matrix  as es-
sentially due to un-modelled abiotic factors, then both abiotic 
and biotic factors explain substantial amounts of temporal 
variation in log-biomass growth across functional types, with 
abiotic forces dominating in all functional types but cocco-
lithophores (Fig. 7). 

Most of the biotic component of temporal variance is 
due to density-dependence, which on average accounts for 
84%, 94%, 92% and 83% of biotic variability in diatoms, 
dinoflagelletes, coccolithophores and phytoflagellates respec-
tively.
3.4.2. Results of the full model. The incorporation of resource 
limitation allowed us to estimate the maximum net growth 
rate,  of each functional type at average conditions (13oC and 
35.10 PSU) in nutrient- and light-replete waters. �iatoms 
have the highest maximum net growth rate followed by 
phytoflagellates, dinoflagellates and coccolithophores with 
mean doubling times 2.5, 3.9, 5, and 5.4 days respectively, 
which are much shorter than the 6-12 day doubling times re-
ported from the reduced model. The posterior distributions of 
the carrying capacities are consistent between the full and the 
reduced model.

Near average conditions (13oC and 35.10 PSU), diatoms 
and phytoflagellates are, as types, essentially unaffected by 

Table 1. Summary of inferred functional type interactions de-Summary of inferred functional type interactions de-
rived from the signs and magnitudes of the interaction coeffi-
cients reported in Figure 5. The sign of the pairwise interaction 
on each type in the pair is shown in parentheses.

Functional type pair Interaction

Diatom-Dinoflagellate Mutualism (+,+)

�iatom-Coccolithophore Neutral (0, 0)

Diatom-Phytoflagellate Commensalism (0, +)

Dinoflagellate-Coccolithophore Mutualism (+, +)

Dinoflagellate-Phytoflagellate Amensalism (-, +)

Coccolithophore-Phytoflagellate Competition (-, -)

Figure 5. Posterior densities of pairwise interaction coefficients, ai,j, with all intra-type (i = j) coefficients set e�ual to –1 to serve as 
reference for interpreting the inter-type interactions. Panel (i,j) displays the posterior density of the interaction coefficient of the func-
tional type whose name appears on the j-th column on the type whose name appears on the i-th row, with darker shading indicating a 
distribution with a posterior mean further from 0.

30 
 

 797 
Figure 5 798 

 799 
 800 
 801 
 802 
 803 
 804 
 805 

 806 

 807 

 808 

Figure 5. Posterior densities of pairwise interaction coefficients, 𝛼�,� , with all intra-type (𝑖 = 𝑗) 809 

coefficients set equal to -1 to serve as reference for interpreting the inter-type interactions. Panel (𝑖, 𝑗) 810 
displays the posterior density of the interaction coefficient of the functional type whose name appears on 811 
the j-th column on the type whose name appears on the ith row, with darker shading indicating a 812 
distribution with a posterior mean further from 0. 813 

 814 
  815 



246        Mutshinda et al. 

small changes in temperature and salinity, whereas dinoflag-
ellates and coccolithophores respond positively to increasing 
temperature and negatively to increasing salinity. The posterior 
distributions of the temperature and salinity effects are consist-
ent between the full and the reduced model (Fig. 8a,b). For 
all functional types, the posterior estimates of half saturation 
constants for inorganic nitrogen are very low relative to the 
nitrogen concentrations (0.1-16 μmol L-1) observed in seawa-
ter at this site over the time series (Fig. 8c). Coccolithophores 
have the lowest half-saturation constant for nitrogen, support-
ing their ability to thrive better than other functional types at 
low nitrogen concentrations, in line with the findings of many 
previous studies including Litchman et al. (2006). 

Phytoflagellates and coccolithophores have respectively 
the smallest and largest irradiance half-saturation constants, 
whereas diatoms and dinoflagellates fall in between with 
comparable irradiance half-saturation constants (Figure 8d). 
These results suggest that phytoflagellates experience saturat-
ing irradiance for most of the year, due partly to their distinc-
tive small sizes, which provide a high light absorption per unit 
of pigment (Finkel and Irwin 2000, Finkel 2001, Finkel et al. 
2004) and thereby, a competitive advantage over functional 
types with larger cells under low light conditions. The com-
petitive edge over other functional types at low light levels 
allows phytoflagellates to maintain a high biomass with rela-with rela-
tively little seasonal variability around the year (Fig. 2). The 
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Figure 7. �ecom-
position of total tem-
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stochasticity) into 
contributions from 
abiotic (left) and bi-
otic (right) factors 
based on the reduced 
model with no ex-
plicit account for re-
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high irradiance half-saturation constant of coccolithophores 
indicates that they require high irradiance levels to grow, 
consistent with the documented increase in coccolithophore 
biomass during summer months under thermal stratification 
and increased irradiance (e.g., Holligan and Harbour 1977, 
Boalch et al. 1978), and the patterns of taxonomic succession 
at Station L4. 

Based on the premise that silicate may not be important 
for non-diatom phytoplankton, we independently assigned 
spike-and-slab mixture prior to the silicate half saturation 
constants to perform variable selection, assuming a prior 
inclusion probability of 0.25 or equivalently prior odds of 
1:3 for including silicate in each functional type’s biomass 
growth model. The posterior inclusion probabilities of sili-
cate for diatoms, dinoflagellates, coccolithophores and phy-
toflagellates were 0.90, 0.03, 0.01, and 0.21 respectively, 
and t corresponding Bayes factors (the ratios of posterior 
odds to prior odds) are 18, 0.09, 0.03, and 0.96, respectively. 
Interpreted on the Jeffreys’ scale of evidence (Jeffreys 1961), 
these Bayes factors indicate clearly that silicate is redundant 
for all functional types but diatoms, which is not surprising 
since diatoms are the only functional type requiring silicate 
for growth. The posterior median of the silicate half-satu-The posterior median of the silicate half-satu-
ration constant for diatoms, 0.65 μmol L-1, is slightly larger 
than the median silicate concentration in sea water over the 
study period 0.54 μmol L-1 and far below the 4th quartile 5.33 
μmol L-1, implying that silicate is frequently limiting to dia-
tom growth. 

The explicit integration of resource limitation signifi-
cantly altered the magnitudes of the interspecific interactions 
affecting each functional type. It broadly reduced the mag-

nitudes of important interactions by 20 to 50%, except the 
negative effect of coccolithophores on diatoms and the posi-
tive effect of phytoflagellates on diatoms whose magnitudes 
increased by 7.5 and 2.4 fold respectively, shifting from sta-
tistically negligible to important (Table 2).

For all functional types, the decrease in residual varianc-
es consecutive to the integration of resource limitation was 
small (<10%) and much less than we expected. Our results 
suggest that resource limitation regulates the dynamics of our 
study community by constraining the realized growth rate 
and adjusting the strength of inter-specific interactions. 

Figure 8. (a) and (b) posterior means (black filled s�uares) of temperature and salinity effects along with the error bars (posterior mean 
± 1 sd) for all functional types based on the full model, with corresponding results based on the reduced model plotted in grey. (c) and 
(d): Boxplots summarizing the posterior distributions of nitrogen and PAR half-saturation constants. 
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Table 2. Posterior means of pairwise interaction coefficients 
among the four functional types at Station L4. Cell (i,j) shows 
the posterior estimate of the interaction coefficient of the func-
tional type j on functional type i under the reduced model (top) 
and the full model (bottom). Bold numbers indicate interaction 
coefficients considered statistically different from zero (at least 
one standard deviation away from zero).

Functional type �iatoms �ino. Cocco. Phyto.

�iatoms
-1
-1

0.18
0.08

 - 0.02
 -0.15

0.04
0.12

Dinoflagellates
0.41
0.31

-1
-1

   0.13
   0.06

-0.43
-0.27

Coccolithophores
0.02
-0.06

0.15
0.08

 -1   
 -1

-0.51
-0.37

Phytoflagellates
0.13
0.10

0.05
0.02

-0.03
-0.03

-1
-1
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4. Discussion

In this paper, we developed a Bayesian model and a meth-
odology for quantifying from in-situ time-series data, the bi-
otic, abiotic and stochastic drivers of community structure in 
species-rich assemblages. We parameterized a VAR model of 
population co-variation integrating demographic stochastic-
ity, density-dependent regulation, pairwise interactions, and 
abiotic forcing mediated by changing environmental condi-
tions and potentially limiting resources, and worked out ex-
plicit formulae for partitioning the temporal variance in each 
group’s dynamics into contributions from biotic factors, abi-
otic factors and demographic stochasticity. 

Although density-dependent regulation is a population-
level mechanism, it has far-reaching community-level dy-
namical implications as a modulator of the among-popula-
tions interaction effects. The interaction coefficient ai,j con-
veys the sign of the effect of population j on the growth of 
population i, but it does not completely determine the mag-
nitude of the effect experienced by population i which, under 
the Gompertz model assumed here, is given by hi|ai,j|. This 
establishes a direct link between the population- and commu-
nity-level biotic regulation with the density feedback hi acting 
as a regulator amplifying the impact of other populations on 
the growth rate of population i beyond the level assumed by 
the interaction coefficients ai,j (j ≠ i) when hi > 1, and vice-
versa. In our example, hi lies between 0 and 1, implying that 
pairwise interaction coefficients generally overestimate the 
actual effects of one functional type on another (Figure 3). 
The intrinsic growth rates, ri, and carrying capacities, ki, de-
termine, through the ensuing density-dependent feedback, the 
magnitude of inter-specific interaction effects experienced by 
each population. In a competitive community, a population 
with higher growth rates can be at competitive disadvantage 
if its carrying capacity is low. Conversely, a population with 
low intrinsic growth rates can enjoy a competitive advantage 
if its carrying capacity is high enough. 

A number of studies, including Mutshinda et al. (2009, 
2011), Porzig et al. (2016) and Lany et al. (2017) have used 
the multivariate Gompertz model to integrate biotic interac-
tions, abiotic forcing and demographic stochasticity in a com-
munity context. To our knowledge, this study is the first to 
incorporate resource co-limitation, and our analysis of the L4 
data demonstrates that the estimates of interaction coefficients 
might change in magnitude and/or in sign with the inclusion 
of resource limitation (e.g., Brooks and Tasman 2018). This 
presents a potential challenge to interpreting the modelling 
results since some of the identified interactions may be ar-may be ar-
tifacts of mutual correlations with one or more unmeasured 
environmental variables (e.g., Hampton et al. 2006). This sort 
of caution is an inevitable consequence of statistical model-
ling since models and data are always incomplete. Additional 
support for inferences can be gathered by showing results that 
are robust to changes in model formulation and replication 
with additional data.

Our example analysis using phytoplankton data from 
Station L4 illustrated the ability of our modeling approach to 
derive trait values for key parameters determining growth of 

functional types, to partition the temporal variance of com-
munity log biomass, and to quantify the magnitude and direc-
tion of biotic interactions among functional types. The four 
functional types examined differ broadly in most of the traits 
(Figs 3-4). Our results are consistent with observed patterns 
of taxonomic succession at Station L4 with coccolithophores 
following blooms of diatoms, as the euphotic zone becomes 
silicate depleted and starts to stratify (Giraudeau and Bailey 
1995). The dinoflagellate biomass tends to increase in low 
salinity (negative salinity coefficient) and high temperature 
(positive temperature coefficient) conditions (Figure 4), 
which are tied to increased stratification and stability of the 
water column, representing conditions unfavorable to dia-
toms due to poor nutrient replenishment from the hypolim-
nion (e.g., Hartman et al. 2014). 

Mutshinda et al. (2017) parameterized a Bayesian model 
to quantify trait values of these four functional types from 
the data considered here, describing the net growth rate of 
each functional type as a linear combination of a density-in-
dependent and a density-dependent component. This analysis 
was simpler than the method presented here in that pairwise 
interactions were not individually identified. Since Mutshinda 
et al. (2017) incorporated temperature in terms of absolute 
deviations from each functional type’s optimal growth tem-
perature rather the z-scores considered here, the positive 
temperature effects found here for dinoflagellates and coc-
colithophores indicate that the optimum growth temperatures 
for these two functional types exceed the average temperature 
over the time series. The parameterization of biotic factors 
adopted here allows us to evaluate the mutual effects of the 
functional types under consideration on each other, which 
may yield valuable insights into the mechanisms of biomass 
co-variation and taxonomic succession at our study site. 

The big difference (approximately a factor of 2) between 
the realized net growth rate  and the maximum net growth 
rate,  from the reduced and the full model respectively, sug-
gests that resource limitation is a major control on biomass 
growth for all functional types. Ecologists often look at eco-
logical control from a “top-down” or from a “bottom-up” per-
spective. The top-down view suggests that predators control 
the numbers of organisms, whereas the bottom-up view holds 
that the quality and availability of food dictates the num-
bers of organisms above in the food web. The strong density 
feedbacks and resource limitation suggest that top-down and 
bottom-up processes cooperate in regulating the L4 phyto-
plankton community.  

The low variance explained by resource limitation may 
reflect a mismatch between the sampling resolution and the 
fast variability and uptake of nutrients. For example, the 
weekly bulk estimates of inorganic nitrogen concentrations 
used here may be relatively uninformative at physiologi-
cal scales since nitrogen is taken up rapidly when available 
(Laws 2013). Moreover, organic sources of nitrogen not tak-
en into account may be important for some functional types 
(e.g., phytoflagellates), and their omission may result in arti-
ficially low half saturation constants for inorganic nitrogen as 
found here. The fact that the inclusion of resources consider-
ably altered the magnitude and even the direction of pairwise 
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interaction coefficients indicates that variation in resources 
mediates the pairwise interactions among functional types.

Mutshinda et al. (2013) used Bayesian variable selection 
to identify the environmental drivers of species abundance in 
a diverse phytoplankton community. Our treatment of silicate 
limitation herein illustrates the value of Bayesian variable 
selection in disclosing the dependence of population growth 
on potentially important resources that enter the model non-
linearly, and the results revealed that diatoms are the only 
functional type subject to silicate limitation as expected. 

Our method demonstrates a new approach to studying the 
dynamics of complex communities from time-series data. We 
incorporate abiotic factors including environmental condi-
tions and resource availability, biotic interactions parameter-
ized by density-dependent factors and pairwise interactions 
between functional types, and stochastic variation including 
demographic variability due to small population sizes. Our 
Bayesian approach allows general forms for these model 
components and robust �uantifications through MCMC 
methods. We demonstrate that resource limitation can greatly 
affect the �uantification and interpretation of traits. This new 
framework for analyzing traits and biotic interactions of func-
tional groups is applicable to community dynamics in a broad 
range of ecological communities.
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