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Abstract 
Marine science researchers are heavy users of software tools and 
systems such as statistics packages, visualization tools, and online 
data catalogues. Following a constructivist grounded theory ap-
proach, we conduct a semi-structured interview study of 23 marine 
science researchers and research supports within a North Ameri-
can university, to understand their perceptions of and approaches 
towards using both graphical and code-based software tools and 
systems. We propose the concept of fragmentation to represent 
how various factors lead to isolated pockets of views and practices 
concerning software tool use during the research process. These 
factors include informal learning of tools, preferences towards do-
ing things from scratch, and a push towards more code-based tools. 
Based on our fndings, we suggest design priorities for user inter-
faces that could more efectively help support marine scientists 
make and use software tools and systems. 

CCS Concepts 
• Human-centered computing → Empirical studies in collab-
orative and social computing. 
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1 Introduction 
Marine science research involves a diverse set of specializations 
such as oceanographers, biologists, geneticists, and statisticians. 
They are heavy users of software tools and systems, including 
statistics packages like R and SPSS, visualization tools like Ocean 
Data View (ODV)1, online data catalogues like GBIF2 and OBIS3, 
1 Ocean Data View [42] (https://odv.awi.de/)
2Global Biodiversity Information Facility (https://www.gbif.org/)
3Ocean Biodiversity Information System (https://obis.org/) 
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as well as custom tools created by labs or research support groups. 
Because of the interdisciplinary nature of the feld, marine science 
researchers have varying preferences for and levels of expertise 
with software tools, and varying ways of understanding and doing 
computation-related aspects of their work. Better understanding the 
way these variances afect the work of marine science researchers 
could enable the design of user interfaces that better support their 
needs. 

Past work has investigated ways that scientists write code 
(e.g., [27, 43]), ways that scientifc software is developed (e.g. [10, 
24, 34]), and specifc marine scientist practices, such as their prac-
tices around data integration [33]. There are also works that have 
conducted studies in support of developing systems to address par-
ticular problems that scientists face, such as code versioning [25] 
and sensor data exploration [41]. Although marine scientists’ work 
is largely and increasingly code-based, GUI tools are still used ex-
tensively. Our work focuses on marine scientists’ overall practices 
around interactive software tool use, including both graphical and 
code-based tools, and addressing both tool creation and tool use. 

To understand the role of software tools in marine science re-
search, we conducted a semi-structured interview study of 23 ma-
rine science researchers and research supports within a North 
American university. We used a constructivist grounded theory 
approach [6]. Based on our analysis, we propose and defne the 
concept of fragmentation as the formation and perpetuation of dis-
tinct, isolated pockets of views and practices concerning software 
tool creation and use. We propose fragmentation not as a problem 
to be solved, but as a way of understanding marine scientists’ cur-
rent views and practices, with both positive and negative aspects. 
We characterize forms of fragmentation, including developing in-
dividualized views of practices in the feld, doing ad hoc software 
engineering in scientifc computing, resisting unfamiliar tools, doing 
things from scratch, and tools having limited reach. Based on these 
and other conceptual categories, we propose three design priorities 
for user interfaces to integrate with fragmentation and mitigate its 
negative aspects, by exploring the potential for graphical interfaces, 
emphasizing collaborative design eforts, and supporting marine 
scientists with discovery and connection. 

The primary contributions of this work are an understanding 
of marine scientist software tool use, presented in reference to 
the concept of fragmentation, and design priorities for how user 
interfaces could be designed to support marine scientists with their 
software tools. 
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2 Background and Related Work 
We highlight the relation of this research to “data science”, and we 
describe related past studies of data analysis processes among natu-
ral scientists and broader groups, and work investigating scientifc 
software development. 

2.1 Studies of data analysis processes 
Data analysis is a core aspect of marine scientists’ work, which 
may lead to the generalization that marine scientists are “data 
scientists”. “Data science” has been used to refer to a variety of 
diferent practices involving obtaining information from data [39], 
sometimes at a broad level (e.g. [49]), or sometimes in corporate 
machine learning or artifcial intelligence contexts [37]. Because of 
the ambiguity, some researchers have started using the term “data 
workers” to refer to “non-professional data scientists” [49] who 
“perform data analysis as part of their daily work but would not call 
themselves data scientists” [28]. Our marine scientist participants 
generally did not identify with the term “data scientist”. Because 
data is only one aspect of their work, we refer to them more broadly 
as scientists. We describe some key types of work in this space to 
diferentiate the focus of our analysis. 

Several works describe the data analysis process of data scientists 
or workers. Based on an interview study in the context of ecolog-
ical sensing data, Wallis et al. [52] describe a nine-stage project 
data life cycle including stages such as “capture” and “cleaning”. 
Also based on an interview study, Muller et al. [32] characterize 
the process of how data science workers at IBM analyze data, with 
similar steps, such as “capture” and “curation”. Jung et al. [22] con-
duct a feld study of craft brewers in Korea to understand “how 
domain experts themselves may engage with data science tools as a 
type of end-user”. They employ craftwork as a sensitizing concept, 
and outline four “tasks” for working with data (e.g., “monitoring 
variables”, “hypothesizing relationships”). They suggest recommen-
dations for data science tools to help support these tasks. Pedersen 
and Bossen [38] investigate data work in the context of healthcare 
business intelligence, describing aspects such as developing reports, 
integrating data from diferent sources, and deciding on data reg-
istration approaches, all serving as “an efort to manage tensions 
between the local and the global”. 

Several works propose categories or personas representative 
of data science skills and approaches. In their well-known work 
“Enterprise Data Analysis and Visualization”, Kandel et al. [23] con-
duct interviews with analysts mostly outside of the natural sciences, 
across multiple organizations. They develop “analyst archetypes”, 
summarize challenges associated with the “tasks” as part of the 
data analysis process (e.g., “wrangle”, “model”), and propose im-
plications for visual analytics tools. Crisan et al. [8] defne “roles” 
of data scientists based on a literature review, and describe their 
process, including steps like “analysis” and “communication”. The 
participants in our study mostly fall under Kandel et al.’s “scripter” 
and “application user” archetypes, and Crisan et al.’s “Technical 
Analyst” or “Moonlighter” roles, due to lack of formal tool training. 

Several works describe how data scientists or workers do ex-
ploratory programming. Based on an interview study of data sci-
entists mostly outside of natural science domains, Kery et al. [26] 
describe how they use computational notebooks. Similarly, based 

on interviews with and surveys of data workers, Subramanian et 
al. [49] compare the merits of scripts and computational notebooks 
for exploratory programming. Liu et al. [28] explore why and how 
data workers make use of “alternatives” for data sources, methods, 
and so on. They describe reasons for and barriers to exploring al-
ternatives, and propose a taxonomy to categorize diferent kinds of 
alternatives. 

In contrast with these works, we are not interested in describing 
stages of an analysis process or characterizing personas of diferent 
analyst types. We explore interactive tools beyond those associated 
with data analysis and beyond just programming tools. 

2.2 Diferentiating scientifc software 
development from conventional software 
engineering 

Past work has studied how scientists develop software, to un-
derstand diferences from conventional software engineering ap-
proaches and propose ways to improve scientifc software develop-
ment. 

A number of works conducted qualitative studies comparing con-
ventional software engineering to scientifc software engineering. 
This has been done in the context of climate modelling software 
developers [10], mathematicians and scientists [17, 43], and high-
performance computing researchers [3]. Common fndings include 
how scientifc software has diferent requirements (e.g., “precisely 
repeatable results” [10]), involves iterative development, follows 
diferent debugging and testing processes, and that the software is 
considered secondary to the science. Segal [43] characterizes “pro-
fessional end user developers” as “people [...] who work in highly 
technical knowledge-rich domains and who develop software to 
further their own professional goals”, noting “they do not think of 
themselves as software developers”. Based on a series of feld stud-
ies with mathematicians and scientists, she compares professional 
end-user development with conventional software development. 
Kelly [24] pushes back against this characterization of scientifc 
software development as a form of “end-user programming”, based 
on a synthesis of her past studies of scientifc software development. 
She proposes the term “knowledge acquisition” as an alternative. 
This is because in scientifc domains, software is never “consid-
ered the end product”, but it “increases knowledge in one or more 
knowledge domains”. 

A number of works in the space of empirical software engineer-
ing use quantitative surveys to characterize how scientists or data 
scientists develop software. These projects provide statistics for 
aspects such as which software tools are used at which project 
stage [53], which programming languages are used [35], and the 
value of software engineering training [15]. 

Several works study software developers or software engineers 
involved in developing scientifc software, addressing aspects such 
as the extra forms of efort needed beyond development [51] (e.g., 
documentation, training), or describing unique characteristics of 
scientifc software [5] (e.g., prioritizing correctness of science over 
software quality). 
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In contrast with these works, we do not investigate marine sci-
ence software use from a software engineering perspective or de-
scribe how software engineering concepts could be imported into 
scientifc software development. We conduct a qualitative analysis, 
focusing on a broader context beyond just software development, 
including both coding-based and graphical software. 

2.3 Studies of natural scientists’ processes 
Past work has studied natural scientists’ processes of developing 
infrastructure, standardization, collaborations, reproducibility and 
data sharing, and data production and management. 

A number of works focus specifcally on the efects or devel-
opment of technological infrastructure in the natural sciences. 
Cutcher-Gershenfeld et al. [9] conduct a quantitative survey con-
cerning engagement with a particular geoscience data sharing 
platform, highlighting potential barriers for engagement. Based 
on ethnographic feldwork at ecological feld research sites, Jack-
son and Barbrow [20] describe how computational infrastructural 
change impacts traditional feldwork in ecology. While feldwork 
came up in our interviews, our research does not focus on the stages 
of doing feldwork. Steinhardt [46] provides a detailed description 
of the “breaking down” of an ocean observatory initiative, and chal-
lenges the notion of “failing fast”. Neang et al. [34] investigate how 
members of a particular oceanography research lab work to make a 
specifc software pipeline they are developing repurposable. Based 
on interviews, they present vignettes describing the diferent stages 
of the project as it moved from a “personal tool” to a “resource that 
is responsive to diferent stakeholder groups”. We briefy touch on 
some of these ideas in our conceptual categories about the reach of 
tools and doing open science; however, the process of infrastructure 
development is not a main focus of our analysis. 

In an ecology context, Jackson and Barbrow [21] describe prac-
tices around coordination eforts to increase standardization at a 
local lab and at a national observatory system, highlighting how 
both experience issues with standardization. At the local level, they 
describe how a protocol book is used for describing standards within 
the lab. At the global level, they describe challenges with coordi-
nation and enforcing standards in the observatory system. Unlike 
this work, we focus on a “local” context, and on aspects beyond lab 
protocol standards. Further, we explore tool use whether the tools 
are standardized or “radically non-standardized” [21], rather than 
focusing on standardization eforts. 

In a biomedical context, Mao et al. [30] investigate challenges 
when data scientists collaborate with domain experts. They conduct 
a deductive qualitative analysis based on a collaboration framework 
proposed by Olson and Olson [36], mapping fndings to categories 
such as “Common Ground” and “Technology Readiness”. They do 
not distinguish “data scientists” from “data workers”. Notably, they 
briefy mention “fragmented information”, referring to information 
stored across many diferent systems, but this is a much narrower 
concept than our broader fragmentation concept. 

Research drawing from workshops with domain scientists [11], 
feld studies of bioinformaticians [18], and quantitative surveys of 
scientists [50] have investigated understandings of reproducibility 
and data sharing practices, including ways of sharing and reasons 

for sharing. Lowndes et al. [29] describe their own process as envi-
ronmental scientists moving to more reproducible tools (e.g., from 
Excel to R). They note that scientists “tend to develop their own 
bespoke workarounds” for handling data due to lack of training. 
Our work highlights how bespoke software tool approaches are 
associated with many more factors than lack of training. 

Other research has investigated scientifc data production and 
management processes. Based on feldwork at a biological station 
conducting agricultural work, Burton and Jackson [4] propose the 
concepts of “coherence” (concerning the “immediate situation”) and 
“integrity” (concerning the “long-term”), and describe data produc-
tion in relation to these two concepts. Specht et al. [44] investigate 
data management challenges in an Australian “science synthesis 
centre”, reporting on quantitative efects of involvement with the 
centre, and challenges expected at diferent data workfow stages. 
Neang et al. [33] investigate how ocean scientists coordinate data 
integration, using the concept of articulation work as a lens. They 
characterize six “scenarios” representing types of collaboration 
between observationalists, and between observationalists and mod-
ellers. These scenarios address ideas including coming to shared 
understandings and communication and collaboration eforts. 

Unlike these works, our analysis focuses in depth on practices 
around software tool use, and unlike most of these works, our study 
is in the context of marine science. 

2.4 Studies about change in natural science 
research 

Steinhardt and Jackson [47] provide a theory of what they call 
“anticipation work”, which refers to the “persistent and perma-
nent” practices that people engage in to “move toward some imag-
ined future”. Based on interviews and observational work, they 
provide three vignettes across projects in oceanography and ecol-
ogy. Notably, they briefy point out how ecology is “a radically 
unstandardized feld”, in that it “has struggled to converge on 
method and technique above the level of the individual site or 
PI research program”. Our work investigates this lack of conver-
gence in detail, in relation to tool use and in the context of marine 
science. 

Continuing in the vein of Steinhardt and Jackson, Kuksenok et 
al. [27] use observations and interviews to investigate code work 
by oceanographers, specifcally focusing on “scientists who code” 
and who have an “attitude of willingness toward uptake of new 
technologies”. They propose a framework to describe the “process 
of uptake” of new tools or protocols as scientists move towards an 
“imagined perfect world” where “tools are (1) understandable, (2) 
perform the necessary task, and (3) persist over time”. 

Although these two works are both in the context of marine 
science, they focus specifcally on change or orientation towards 
change. In contrast, our work focuses on software tool use in the 
present, and on tools broader than just code. We address resistance 
to change within one of our conceptual categories. 
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Table 1: Research stage and area of participants. 

ID Stage Area ID Stage Area 

P1 PhD Applied math & statistics P13 Master’s Microbial genomics 
P2 Postdoc Marine biology P14 PhD Physical & chemical oceanography 
P3 Master’s Biological oceanography P15 PhD Applied math & statistics 
P4 PhD Biological oceanography P16 Postdoc Microbiology 
P5 Undergraduate Biological oceanography P17 PhD Applied math & statistics 
P6 Postdoc Marine biology P18 Professor Physical oceanography 
P7 Undergraduate Biological oceanography P19 Adjunct professor Physical oceanography 
P8 Postdoc Biological oceanography P20 PhD Microbial genomics 
P9 Postdoc Immunology (Genomics) P21 Staf Biological oceanography 
P10 Postdoc Applied math & statistics P22 Industry collaborator Marine biology 
P11 Professor Applied math & statistics P23 Staf Earth science 
P12 Professor Bioinformatics 

3 Participants, Interviews, and Analysis 
We used constructivist grounded theory [6], following an iterative 
approach of data collection and analysis. We understand our con-
ceptual categories as constructed interpretations dependent on our 
own experiences and values, and situated in the specifc context 
of study. The frst and third author have backgrounds in HCI. The 
second author is a senior professor in applied math and statistics 
working within an oceanography lab at the university of study. 
Many past studies of scientifc work practices have been conducted 
by those with software engineering backgrounds, and our views 
may difer from these perspectives. 

We recruited 23 participants associated with the university of 
study (15 men, 8 women). There were 3 participants aged 18–24, 
11 participants aged 25–34, 5 aged 35–44, 1 each aged 45-54, 55–64, 
and 65 or older, and 1 with unspecifed age. Participant research 
stages and areas are listed in Table 1. We primarily focused on re-
searchers, such as professors and graduate students, in the general 
area of marine science. We initially recruited from within a single 
oceanography lab (P1–P8), before expanding out to other marine 
science labs (8 total). We recruited two members of research sup-
port teams within marine science (P21 and P23), to gain additional 
insight on tools from the perspective of those who develop them. 
We also recruited one data science postdoc (P9) currently work-
ing in the space of immunology, because he was part of a shared 
genomics institute at the university with a strong representation 
of ocean microbe genomics researchers. Because marine science 
is highly interdisciplinary, our participants perform research in a 
range of subareas, including oceanography, marine biology, applied 
math and statistics, and ocean microbial genomics. As the study 
progressed, we used theoretical sampling to seek participants with 
particular knowledge based on theoretical concepts of interest, and 
to understand variation within our theoretical concepts. 

We performed intensive interviews with participants, but early 
interviews included more informational questions to gain a de-
scriptive understanding of the context. We extended our interview 
questions over the course of our study, as we became more sensi-
tized towards topics such as transitioning between tools, areas of 
education, research priorities, and what it means for a tool to be 
fexible. Interviews were 50 minutes on average, ranging from 14 to 
97 minutes. 21 interviews were recorded and transcribed for analy-
sis. Two participants (P11 and P18) requested not to be recorded, 

for whom we wrote detailed notes for analysis. 19 interviews were 
conducted in-person, and 4 were conducted via videoconferencing 
software. 

We used initial coding to characterize participants’ thoughts, 
feelings, and actions regarding software tool use. We refned our 
codes through focused coding and constant comparison between 
statements made in diferent interviews. Throughout the process of 
interviewing and analysis, we used memoing as a way of comparing 
statements, codes, and other memos, defning concepts, identify-
ing variations of ideas, and reasoning about theoretical categories. 
We also made extensive use of diagramming to better understand 
relationships between concepts and make more meaningful com-
parisons between participant statements. 

4 Findings 
Based on our analysis, we propose fve highly-interconnected con-
ceptual categories, F1–F5, that represent forms of fragmentation 
within marine science (Figure 1). In this section, we frst give a 
high-level description of how our participants used software tools, 
followed by brief descriptions of fve peripheral process categories, 
C1–C5, to provide important context for the core fragmentation 
concepts that follow. The italicized sentences at the beginning of 
each fragmentation concept describe how it acts as a form of frag-
mentation. Certain aspects of the conceptual categories we describe 
have been investigated by past work in related domains. Where 
relevant, we briefy describe how our fndings confrm or contrast 
with such past work. 

4.1 High-level Description of Tool Use 
Our participants investigate a wide range of marine science prob-
lems, such as taxonomic classifcation (P16), ocean mixing processes 
(P19), microorganism genomics (P12), and animal tracking (P10). 

Some of our participants engaged in feld work and wet lab work, 
which involved collecting samples on research cruises, or making 
measurements of previously collected cultures in the lab. For in-lab 
equipment, data was extracted from equipment by manually reading 
values from displays, using connected portable media (e.g., USB 
keys), or through cloud storage-connected computers that interface 
with the equipment. Specialized analyses, such as elemental analysis 
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FRAGMENTATION

F2
Doing ad hoc 
software engineering 
in scientific computing

F1
Developing 
individualized views of 
practices in the field

C1
Leaning into enjoyed 
aspect of work

C3
Learning tools 
informally

F3
Resisting unfamiliar 
tools

F4
Doing things from 
scratch

C2
Doing open science

C4
Developing trust of 
data and processes

C5
Transitioning towards 
more coding-based 
tools

F5
Tools having limited 
reach

Figure 1: High-level concept map of the contextual (C) and fragmentation (F) concepts, illustrating interconnections and 
relationship to main concept of fragmentation. Arrows represent infuences between concepts. 

and gene sequencing, were delegated to other labs or facilities. Data 
was also collected from equipment such as gliders and foats.4 

Preparing and analyzing data is important for the scientifc work 
done by our participants. Participants worked with a variety of 
data types, such as sensor data (P11), acoustic data (P11), genome 
data (P12), image data (P2), tabular data like CSV and Excel fles 
(P3), NetCDF fles5 (P15), and shapefles6 (P10). Data preparation 
involved quality checking (e.g., fnding errors with online data 
or duplicate records), combining data in diferent formats from 
multiple sources (e.g., books, paper supplemental materials, online 
databases), taking subsets of data from larger data repositories, 
and cleaning data by removing outliers and modifying column for-
mats. Visualizations were used for tasks such as identifying outliers, 
producing phylogenetic trees, and understanding statistical model 
output. Some participants dealt with large amounts of data (e.g., 
P16, hundreds of terabytes), necessitating use of high-performance 
computing infrastructure, whereas other participants dealt with 
small amounts of data using software like Excel. 

Software tools are central to a range of marine scientists’ research 
tasks, including for analysis, writing, note-taking, and sharing fnd-
ings. Excel was used for both data collection and simple analysis. 
There was also some use of dedicated statistics and visualization 
tools like SPSS for statistics and ODV (Figure 2) for ocean map 
visualization. Coding-based tools, like R (e.g., in RStudio), Python, 
Matlab, were commonly used. Computational notebooks, such as 
Jupyter, were often used in communication and teaching contexts, 
but less common for research use. Scripts were often preferred for 
research due to modularity, ease of running in background, and 
lower perceived efort than notebooks. While GIS (Geographic In-
formation System) software was used historically, there has been 
a transition away from these tools to alternative approaches like 
using R to generate maps. Participants used a variety of diferent 
4Glider: Type of autonomous underwater vehicle. Float: Tool deployed in bodies of 
water to make measurements. Both carry sensing instrumentation.
5https://www.unidata.ucar.edu/software/netcdf/ 
6A vector format for geographic information. 

approaches for troubleshooting software tool problems, including 
online help resources like StackOverfow and ChatGPT, online com-
munity support channels for specifc tools (e.g., Discord or GitHub 
communities, paid customer support), documentation, and seeking 
help from colleagues. 

Most participants did not identify with the term “data science”, 
preferring alternatives like a “scientist that works with data” (P19). 
This is because they saw data science as having a diferent scope 
(e.g., machine learning-focused), or as more about problem solv-
ing for the sake of problem solving, rather than for science. Also, 
data work was only a part of their overall work; for example, P18 
described data work as only an “auxiliary” component of oceanog-
raphy work. 

4.2 Contextually-relevant Concepts 
The following fve concepts are important to understanding the 
context of our core fragmentation concepts and situate them within 
in the priorities of marine scientists. 

C1: Leaning into enjoyed aspect of work. Participants described pre-
ferring to focus on either the ‘science side’ or the ‘tooling side’ 
of their work. Among our participants in researcher roles, these 
were individual-level preferences towards certain types of work, 
not a division that could be wholly attributed to subarea. On the 
science side, participants enjoyed investigating their main scien-
tifc questions. Participants on the science side actively tried to 
make more time for scientifc or analysis work, for example, by 
avoiding learning new tools until they are needed (P3), and using 
existing domain-specifc tools to simplify technical aspects of work 
(P12). In contrast, participants on the tooling side enjoyed making 
software work, improving code efciency, or thinking about data 
representations. These participants addressed research questions 
posed by collaborators (e.g., P9), developed their own software (e.g., 
P10), or made data analysis tools for researchers (e.g., P23). 

C2: Doing open science. The push towards open science is afecting 
how marine scientists work. There is an increasing expectation 

https://www.unidata.ucar.edu/software/netcdf/
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to share code and data publicly. The efects of open science have 
been detailed in past work in related felds such as ecology [29, 
31, 40]. When access to code or data is withheld, for example, due 
to sensitivity (P10) or to avoid being scooped (P4), reproducibility 
is hampered. For example, P15 mentioned avoiding sharing code 
publicly because she feels pressured to make demos to go with 
it. Past work provides more details on specifc barriers to sharing 
software and data [16, 31, 50]. Making an efort to make research 
artifacts, code, and data more presentable for sharing was a common 
task among participants, who felt a sense of responsibility to make 
these artifacts useful. For example, ODV was used to make more 
“beautiful” map fgures (P8). 

C3: Learning tools informally. Participants generally learned tools 
in informal ways. This means they have varied educational back-
grounds that often do not involve formal training in tools, pro-
gramming, or computational thinking (e.g., P11). This fnding 
provides further confrmation that, at least historically, scientists 
generally lack formal training in programming or software engi-
neering [3, 11, 15]. 

Rather than seeking more formal training options, our par-
ticipants generally learned computing skills and tools indirectly 
through doing their research, which is unsurprising in light of C1. 
One way this occurred was through trial-and-error. For example, 
P15 learned how to parameterize code so that she could more easily 
make tweaks suggested by her supervisor. Some tools have such a 
small user base that formal training options are not available. For 
example, P17 needed to learn how to use a package that he only 
knew about because his “supervisor had collaborated with the people 
[who developed the package]”. 

C4: Developing trust of data and processes. Developing trust of data 
and processes was a key concern for participants. This aligns with 
past descriptions of scientists desiring confdence in the output of 
software [24, 34]. For example, in oceanography, deciding on the 
choice of gridding methods (interpolating data based on samples) is 
an important process that strongly afects whether resulting visual-
izations are trustworthy (e.g., P2, P15). Blind application of default 
gridding values in software like ODV can lead to untrustworthy 
output (P18). Our participants followed a number of approaches 
for developing trust, such as scrutinizing others’ code, tools, and 
data based on presence in online repositories like CRAN (P18) or 
level of trust in the community (P15). 

In marine science, a key context for developing trust is when 
converting raw signals from sensing equipment. These are in units 
that serve as proxies for desired units, such as how conductivity is 
a proxy for salinity. This need for trust is because the relationships 
between raw and desired units are “subtle” (P19), and proprietary 
software from equipment manufacturers obscures any assumptions 
going into the processing. Participants like P19 were able to de-
velop higher trust in the process by implementing their own unit 
conversion code. 

C5: Transitioning towards more coding-based tools. There is a shift 
towards more coding-centric tools because of advantages they pro-
vide, which parallel disadvantages of traditionally-used GUI tools. 
This shift highlights a number of criteria that participants consider 
important for their software tools, such as fexibility, power, and 

Figure 2: Screenshot of Ocean Data View software tool. 
Screenshot by author, courtesy of Schlitzer, Reiner (Ocean 
Data View). 

reproducibility. Also, many modern statistical methods are inher-
ently computational, making code a requirement for their efective 
implementation (P10). 

GUI software can hamper fexibility by imposing ways of doing 
things, such as imposing specifc algorithms or visualization types 
(P2, P20), or assuming particular experiment designs (P16). It can 
also hamper automation; for example, by not providing a way to 
redo repetitive tasks (P6), or necessitating manual data import and 
export (P4). In contrast, coding-based tools support fexibility by 
providing a wide range of functionality such as statistical analysis, 
and making fgures and maps (P10), enabling reuse of old code for 
new projects (P2), and enabling functionality to be automated (P19). 
Code also has greater ability for interoperation of diferent systems. 
For example, it can be used to programmatically read formats meant 
for GUI tools, such as manufacturer-specifc sensor data (P19), and 
diferent programming languages can call each other. 

GUI software can lack power, meaning scope and scale of func-
tionality. For example, statistics software SAS has limitations for 
making fgures (P8), online databases may lack flter options when 
searching (P6), and GUI software may be inefcient or incompati-
ble with handling large amounts of data (P14). At the same time, 
many GUI software tools are also highly complex, which impacts 
the extent of their usefulness. For example, P11 said that ArcGIS 
“basically needs a developer” to do advanced tasks, and P21 described 
a specifc graphical data server system as “very powerful” only for 
“hardcore” users. 

GUI software can hamper reproducibility, which is counterpro-
ductive towards open science (C2). For example, GUI software often 
involves many manual processing steps that are not recorded (P19). 
Proprietary GUI software also can require licensing, for which as-
sociated fees (P18) and the number of license seats (P20) can be 
limiting. In contrast, code can serve as documentation for repro-
ducibility purposes. This because it is a “full explanation of process” 
(P18), in line with past work by Mislan et al. in ecology [31]. 

4.3 F1: Developing individualized views of 
practices in the feld 

Having missing or incomplete knowledge of what others in the feld 
are doing is a form of fragmentation of views. Many of our partici-
pants had developed individualized views of practices in the feld. 
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This means that they formed preconceptions about how others 
are using tools, were unfamiliar with tools used by others, did not 
know the range of capabilities of systems that they or others are 
using, or were missing ways to learn about what others are doing. 
Missing the broader context when learning tools informally (C3) 
may contribute to this. For example, P14 described his concerns 
with using online resources to learn about package managers: “I 
don’t really understand why there’s so much emphasis on the fact that 
[using the Conda package manager] is the way to go. [...] I think that’s 
because I’m lacking the experience and the skills to really understand 
all the benefts of it.” 

Participants formed preconceptions about other scientists’ tool 
use in the form of generalizations. For example, P3 claimed that 
“everyone” is using R (despite wide adoption of Python and other 
languages), and P21 claimed that computational notebooks are 
“not widely used” (despite their prevalence in oceanography). It 
also appeared that more senior researchers were overoptimistic 
about the extent to which junior researchers adopted code-based 
approaches, making claims like, “[oceanographers] make their own 
stuf” (P11), and oceanography students are “highly motivated” to 
learn coding (P18). 

Our participants’ diferent views of the NetCDF format, a com-
mon format for gridded data, serve as another salient example. P11 
mostly works with text-based data fles (e.g., CSV). He described 
NetCDF fles as just “for people to serve of spacetime data”, seeing 
their use as a unidirectional process of extracting data for use in 
other formats. In stark contrast, P14 uses NetCDF fles as his pri-
mary data format, including for output and intermediate data fles. 
He does this because NetCDF fles are more storage efcient for 
sparse, multi-dimensional gridded data: “NetCDFs are usually very 
efcient for gridded projects. [...] I have an ocean model that simulates 
my ocean by dividing it in three dimensions plus time. And those three 
dimensions are in the grid, right?” He also appreciates the built-in 
support for metadata and strong library support: “I fnd that Python 
is so efcient in reading NetCDF. And so, even when I just write out 
a few columns of data, I still would prefer to create a NetCDF just 
for the metadata, because you can really have convenient metadata 
associated with your fles. [...] I don’t really see the benefts of saving 
in a CSV fle when you can save a NetCDF.” 

Beyond preconceptions, another form of individualized views 
was being unfamiliar with others’ tools. Examples include re-
searchers who were unaware of common tools or systems such as 
ODV (e.g., P11) or OBIS (e.g., P6), and a technical team member who 
did not know of an alternative data server system highly related 
to the one they are using (P21). P18 expressed how it is difcult 
to fnd out what systems other people are using. This relates to 
work from Subramanian et al. [49], which found that some data 
workers do not use computational notebooks because they are “not 
[...] aware of their existence”. In the context of our participants 
working in bioinformatics, participants often used similar pipeline 
tools (e.g., QIIME27). However, other participants we asked about 
workfow tools (e.g., Kepler [1]) were unaware of such tools or 
perceived them as too “generic” for their purposes (e.g., P11). Some 
participants were also unaware of the range of capabilities of the 
software they were using. For example, P6 did not realize that R 
7A bioinformatics pipeline for analyzing genome sequencing data (https://qiime2.org/). 

could be used to do image processing. P20 described needing to 
take a long time to fgure out visualization options ofered by a tool: 
“knowing what is available for visualizing the data [in a graphical 
tool...] isn’t necessarily something that you know of the bat. That 
takes years to fgure out, and sort of teach yourself what graphical 
visualizations these programs can ofer”. 

4.4 F2: Doing ad hoc software engineering in 
scientifc computing 

Code artifacts resulting from individual coding approaches lead to 
diferent, isolated practices centred around them. Marine scientists 
have started to use approaches associated with software engineer-
ing (C5), such as versioning fles, and implementing and running 
code. However, because this is in service of scientifc needs, such as 
experimenting in real-time and documenting the process, uses of 
these approaches are more individual, and may vary from those of 
software engineers. Participants felt they did software engineering-
related tasks in ways that were unusual, or made “weird” (P17) use 
of tools. As with F1, the prevalence of informal learning approaches 
for computing skills (C3) may also contribute to this tendency. 

One ad hoc software engineering approach is modifying and run-
ning code interactively in real-time. This includes using packages 
like Shiny to do interactive data exploration (P10), and using com-
putational notebook cells to tweak visualizations (P14). Many of 
our participants preferred scripts over notebooks due to familiarity 
and the ability to do select-and-run execution of code. This means 
that individual lines would repeatedly be modifed, highlighted, 
and re-run to achieve a desired outcome. For example, P8 described 
doing multiple statistical tests with the code-based features of SAS 
as: “I can just select it and run it, [...] especially when I will do ANOVA 
for diferent variables. So I don’t like to directly write down the coding, 
so [much] coding, just for diferent variables.” This fnding contrasts 
with Subramanian et al.’s [49] study of data workers outside the 
context of the natural sciences, for which they argue that “scripts 
are not well suited to exploratory work”. 

Another ad hoc software engineering approach is using code-
based artifacts in ways beyond just instructions to be executed. For 
example, code serves as documentation of the scientifc process 
(C5), which supports reproducibility (C2). Participants also had 
individual approaches for using scripts to conceptually group parts 
of their work, such as grouping based on functionality (P17) or 
paper sections (P2). Older code was used as a memory aid. Some 
of our participants returned to their old code to have a starting 
point for similar new projects (P16) or to help colleagues working 
on similar problems (P15). Computational notebooks were used to 
enable embedding of mathematical equations and visualizations 
(P14), and extra documentation, as also discussed by Kery et al. [26] 
in the context of data scientists. For example, P16 adds Bash chunks 
to Jupyter Notebook as documentation of commands used in other 
parts of her pipeline: “I also tend to use [R Markdown] to save the 
commands that I’ve run in any other part of the pipeline. [...] You can 
put them in Bash chunks as well. [...] I just use it to document what 
I’ve done.” 

A third common ad hoc software engineering approach is doing 
versioning in an informal way. Participants had a variety of ap-
proaches for versioning, such as making manual copies of fles (P4), 

https://qiime2.org/
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using cloud storage versioning features (P6), and using slide decks 
to keep records of code outputs (P14). Our fndings concerning 
informal versioning approaches align with Kery et al.’s [25] study 
of exploratory programming in the context of data scientists. 

In line with participants’ ad hoc software engineering practices, 
participants on the ‘science side’ (C1) also did not view their own 
code work to be “programming” or “coding”. Our participants char-
acterized their work like this because they perceived their code 
to be lacking in some way, such as being messy (P2), or using an 
easier programming language (P8). 

4.5 F3: Resisting unfamiliar tools 
Maintaining individual tool use practices by resisting uptake of unfa-
miliar tools entrenches these diferences in common practice, acting 
as a form of fragmentation. Most participants expressed some level 
of anxiety or resistance towards learning or using unfamiliar tools. 
Our fndings concerning reasons for resisting unfamiliar tools re-
late to Liu et al.’s [28] “barriers” to exploring alternatives in the 
context of data workers in industry; however, we also highlight that 
alternatives are often not explored and describe how unfamiliar 
alternative tools are avoided. 

In a coding context, resistance is created because programming 
and programming tools are seen as intimidating, for reasons such as 
lack of confdence (P6) or the perception that they are too “advanced” 
(P4). Code-based approaches may necessitate writing code in ways 
that deviate from scientifc mental models. For example, P15 said, 
“the way our methods work, it’s on an observation-by-observation 
basis, not like a matrix basis”, which was the format expected by the 
code. She found this diference between her mental model and the 
data representation in code to be “annoying and frustrating”. Fur-
ther, a combination of diferent pressures, such as the expectation 
for students to fgure things out themselves (P12), dogmatic learn-
ing resources (P14), and punitive courses (P16), may lead marine 
scientists to become discouraged when learning coding or other 
software engineering concepts. For example, P4 described using a 
trial-and-error approach to learning R for data processing: 

“I tried myself. I kept trying and trying, because I have 
seen that kind of data, how R fles open, how to run 
them. So I tried it, [but] it’s not happening. I was like, 
‘Oh my god!’ Yeah, then only I decide, ‘Oh, it’s not worth 
it to spend my time on something I cannot fgure out.’ 
Maybe let it be there, focus on something [else], take 
some of [a colleague’s] time and come to him and get 
his help. Yeah, for him, it was easy.” 

As another example, P16 described how an introductory program-
ming course during her PhD discouraged creative problem solving: 

“When we were in the class, [the TA] seemed to want 
people to just do things in one specifc way. Whereas, 
usually in programming, there’s a lot of diferent ways 
you can achieve a single thing. And if you’re learning, 
if you can make it work in any of those ways, it doesn’t 
matter if it’s the most efcient or not. You can work 
on making it be the quickest way possible later, once 
you’ve got the basics down.” 

She continued to describe how this kind of treatment came of 
as punitive, even leading some students to cry: “He had a bit of 

a tendency to come around to me like, ‘What are you doing! Why 
have you got that?’ And, you’re like, ‘I don’t know. I thought I was 
working on it.’ ” This intimidation factor is highly interconnected 
with the other concepts, in that lacking formal computing training 
(C3), increased pressure to use code as a means of advancing open 
science (C2), and the feeling of not being a programmer (F2) may 
all contribute. In a GUI context, interfaces such as ArcGIS can also 
be seen as intimidating (P3) due to their high level of complexity 
(C5). 

Participants on the ‘science side’ (C1) tended not to prioritize 
learning unfamiliar tools, instead resisting them by sticking with 
familiar, “good enough” tools. For example, P17 described how he 
has become used to coding in C++ with RStudio, despite its incon-
veniences: “[If] I screwed up the code within the C++, like if I screwed 
up my indexing somewhere, it makes [RStudio] crash and then [...] 
I have to terminate it and start it over, and that’s aggravating. So I 
would say it’s good enough, but there’s defnitely better ways, but 
it’s the point I’ve gotten used to it.” Despite this, participants were 
curious about and interested in learning new tools that were “cool” 
(P3) or “popular” (P15). Participants would not make time to learn 
new tools for reasons such as struggling to keep up with changes to 
tools (P2). Participants would also ofoad or delegate tool-related 
tasks to others such as technical staf (P11) or collaborators (P22), 
like how P4 ended up delegating coding work to her colleague. Par-
ticipants sometimes fell back on familiar tools after unsuccessfully 
trying to use an unfamiliar tool; for example, using Excel after being 
unable to fgure out how to export fgures using R (P6). In contrast, 
marine scientists more on the ‘tooling side’ (C1) may experience 
increased motivation to learn new programming tools. For example, 
P10 was keen to code and learn new programming tools as a way 
of “procrastinating” from other work. 

4.6 F4: Doing things from scratch 
Duplicated eforts when creating tools and systems form new isolated 
instances of associated practices. Our participants generally had 
a “bias of wanting to do things from scratch” (P11), as opposed to 
reusing existing tools from others or automating tasks. There are 
cases where existing tools do not exist to achieve the required 
functionality (P10), necessitating creation of new tools. However, 
there are also many cases of “reinventing the wheel” (P14), despite 
aspirations to avoid duplication of work. This may be exacerbated 
when marine scientists are unaware of what tools others are using 
(F1). These fndings expand on several past works that identifed 
a subset of reasons for why scientists may avoid using others’ 
tools, namely the need for “precisely repeatable results” [10] and 
avoiding the need to “force” work into “the interface supported by 
the framework” [3, 16]. 

There may be external social or infrastructural limitations. For 
example, P23’s team had acquired satellite data that they wanted to 
make publicly available. They asked a local NGO (non-governmental 
organization) that was hosting similar data if they would be inter-
ested in including this satellite data. The NGO needed to refuse 
because their infrastructure could not support so much data, which 
resulted in P23’s team needing to make their own online database. 
As another example, P19 highlighted that large-scale system devel-
opment eforts may lack sufcient funding. Similarly, it may not 
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be possible to use existing tools because of issues concerning open 
science (C2). For example, P21 described how his team was unsuc-
cessful at requesting access to a sister institution’s glider metadata 
software: 

“They have a fantastic metadata software, because 
they’ve been doing this for a long time. [...] And so, 
we asked them many times if they would share it with 
us. [...] I feel very strongly that, if it’s taxpayers dollars, 
we don’t charge for things, because they already paid 
for it. They did not feel that way. So we ended up writing 
our own package.” 

There may be a desire to do things from scratch to develop 
trust that a system has been correctly implemented; for example, 
P19’s implementation of signal conversion code described earlier 
(C4). P19 also makes use of packages where he “trust[s] the people 
doing it” to avoid needing to “reinvent the wheel”. Similarly, there 
is educational value in doing things manually. For example, P17 
described doing data preparation manually rather than automating 
it as a way to become familiar with the data: “I think there’s inherent 
value [in manually doing data formatting], because I have to look 
at [the data] a lot. Like, it’s pre-visualization to me, [...] it’s very 
useful for me to spend time playing with it just to get it in a shape 
that makes sense. But to get it in that shape, I have to look at it.” As 
another example, P7 described doing manual calculations in Excel 
to learn how lab protocols work, as opposed to automating these 
calculations. This serves as a form of informal learning (C3). This 
practice was also observed by Huang et al. [18] in the context of 
bioinformatics, in which they found that more junior researchers 
would create scripts as practice. 

Existing packages and tools can also be hard to learn, for rea-
sons such as incomplete or out-of-date documentation (P10, P15), 
low user-friendliness (P1), or lack of fexibility or interoperability 
(P6, P14). P17 explained this sentiment, elaborating on how it is 
challenging to fnd existing tools for niche contexts: 

“Honestly, it’s all about making it easy on myself. And 
I’m like, ‘If I don’t see a lot of people needing to do 
this, then there might be a package, but it might be a 
hassle to fnd, might not be on CRAN’. And like, am I 
really going to be saving time by fnding it? Because 
then I’ll [also] have to learn their own specifc way of 
doing things because everyone codes slightly diferently 
and expects diferently. And if I just do it myself, it’s 
probably faster.” 

Anxiety towards learning new tools (F3), and feeling “at the mercy of 
whoever designed [a tool]” (P6) may also contribute to the tendency 
to do things from scratch rather than try to learn existing tools. 
Experienced researchers may create things from scratch because 
they feel they can do better than what already exists; for example, 
by providing more fexibility in what a tool can do (P11) or a better 
choice of algorithms (e.g., P18, using an algorithm that reduces 
rounding error). 

4.7 F5: Tools having limited reach 
The limited reach of tools, caused by factors such as the preconception 
that tool use will be niche and the “cultural gulf” between technical 
teams and researchers, propagates isolated pockets of practices, acting 

as a form of fragmentation. Tools made by or for marine scientists 
may reach a narrower audience than would theoretically fnd them 
useful. 

There appears to be a somewhat self-fulflling cycle of expecting 
tool use to be niche, resulting in the creation of especially niche 
tools. This also potentially leads to duplication of efort (F4). For 
example, some participants held the preconception that the num-
ber of users of their packages would be small because it is in a 
niche context (P17, P23). Packages may not be added to trusted 
online repositories such as CRAN because they are perceived as too 
niche (P17), preventing others who rely on these repositories, such 
as P18, from discovering them. Tool creators may treat smaller 
contributions as categorically diferent from larger software. For 
example, P21 said, “[Within] my group, we’ve only built completely 
from scratch one bit of software”, referring to full systems with 
maintenance and training. He elaborated, “We’ve written a lot of 
data processing scripts, but I wouldn’t call that software per se, right? 
Lots of times it’s one-ofs, you know, you’re processing from a par-
ticular instrument, [and so on].” These smaller contributions may 
not be shared with the community if they do not meet the bar of 
being “software”, despite their potential benefts. Tools may also 
hard-code assumptions specifc to particular subareas. For example, 
P16 described a series of tools all made by one group that are de-
signed to interconnect. However, one of these tools hardcoded the 
assumption that human samples will be provided, even though the 
algorithms could theoretically work for a broader range of samples 
like ocean environment samples. This meant that P16 needed to 
use a mix of tools from diferent sources. 

There is also a “cultural gulf” (P11) between computer scien-
tists (e.g., technical teams) and science researchers, in part due 
to difering priorities (C1). From a standpoint of software devel-
opment practices, this has been explored in depth by past work 
(e.g., [3, 10, 24, 43]). In the context of our participants, this includes 
a feeling that the generic tools made by “higher-ups” are “out of 
touch with what [scientists] need” (P18). For example, P18 described 
a time when the university’s library created a repository for storing 
scientifc data, but it could not even hold one terabyte of data, ulti-
mately rendering it unusable for the labs. This fnding is mirrored 
in ecology work by Aubin et al. [2], which argued that “Top-down 
initiatives [to encourage data sharing and integration] have found 
limited success in ecology because they are rarely customized to 
take into account the specifc sociocultural challenges around shar-
ing ecological data”. 

Misaligned goals between technical and research teams may lead 
to development of graphical tools with problematic designs (C5). 
For example, some of our participants mentioned how tools have 
complex features that may go unused, such as a “fake cruise” tran-
sect search feature ofered by a particular online database, which 
P2 did not have a use for. P11 also felt that “lots of software is never 
taken up by the community” because it lacked “an integrated devel-
opment efort” across computer scientists and science researchers. 
Our two participants associated with technical teams described a 
more hands-of approach to tool interface design. For example, P23 
described her team’s approach to graphical design as “mostly within 
the team”, and P21 said that his team wants to stay “away from hav-
ing public-facing websites”, in part due to complexity around making 
user interface design decisions that address “what’s important” for 
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users. One consideration is that technical teams who implement 
new tools focus on “client-driven” (P21) work, which may bias 
the focus of tool implementation towards systems with narrower 
scopes. For example, even though P21’s team is “the” technical 
group for the oceanography department, many of our participants’ 
groups associated with oceanography were not using their services 
for their main work, instead doing technical work themselves, or 
relying on their own in-lab technicians or neighbouring labs. 

P18 felt that researchers are increasingly working on “fddly little 
things” to increase publication counts and satisfy “bean counters”, 
rather than doing work that potentially provides more value to 
the community. P12 elaborated on how this is afected by funding: 
“[The] academic funding model is really centred on graduate students, 
largely, and to a lesser extent, postdocs. And sure, you can have a 
graduate student who contributes code to a project, but they have a 
research project to do. They need a thesis, right?” P18 emphasized 
the desire for scientists to receive credit for community work such 
as making software packages. This sentiment is refected in past 
work suggesting that recognition for software contributions is lack-
ing in the sciences [12, 43, 45, 47, 51], with exceptions such as in 
bioinformatics [18]. 

5 Discussion and User Interface Design 
Priorities 

We discuss our participants’ use of code in relation to past work, 
and propose design priorities for future user interfaces for marine 
scientists. 

5.1 Refecting on Marine Scientists’ Use of Code 
in Relation to Past Work 

The notions of unconventional coding practices in science and 
software work as secondary in science are recurring ideas in our 
fragmentation concepts and in past work. We briefy refect on our 
analysis and past work in reference to these ideas. 

In line with how our participants felt they did software engineering-
related tasks in unusual ways (F2), past work has described scientifc 
development and analysis as “iterative” [43], “non-linear” [23], and 
lacking “formal [...] methodology” [16]. Similarly, our marine sci-
entist participants also generally did not view their own code work 
as “programming” or “coding” (F2). This similar to past work by 
Segal [43], which argues that scientists “do not think of themselves 
as software developers”, and work by Kelly [24], which found that 
“scientists do not see themselves as software developers [...] but as 
a professional who uses software as part of their exploration”. 

Past work has often framed this unconventionality as problem-
atic. For example, Lowndes et al. [29] argue that “[w]ithout training, 
scientists tend to develop their own bespoke workarounds to keep 
pace, but with this comes wasted time struggling to create their 
own conventions for managing, wrangling and versioning data”. 
In contrast, our analysis highlights that this time is not inherently 
“wasted”, because there is potential to learn about the algorithms 
or data (e.g., P17’s comment about “pre-visualization” in F4), and 
ad hoc approaches (F2) can support interactive data exploration 
and avoid struggles (e.g., P15’s concern about data representations 
in F3) by working with data according to a familiar mental model. 

Kuksenok et al. [27] also share our observation that “Lack of re-
use is problematized in software engineering accounts of scientifc 
programming practice, as well as in internal critique that adapts 
software engineering rhetoric”, and they push back against “lack of 
interest, willingness, or awareness” as reasons for not reusing code. 
However, based on their specifc participant pool of oceanographers 
with “an attitude of willingness toward uptake of new technolo-
gies”, they argue that “motivated scientists enthusiastic about best 
practices choose to adapt them to safeguard the scientifc usefulness 
of the code they work on”. In contrast, based on our broader scope 
of marine scientists that had mixed interest in software engineering 
concepts, we argue that lack of interest can be a reason for not 
reusing code. Many of our participants were not “motivated” or 
“enthusiastic” about “best practices”, because they had no reason to 
be enthusiastic about software engineering-related concepts (C1) 
unless they ofered alluring functionality (F3). Lack of willingness is 
also a reason because our participants often did not want to spend 
time learning software (C1), and awareness is also a reason because 
of informal training (C3) and preconceptions about software use 
(F1). This is in line with past work characterizing software-related 
work like coding as “secondary” [17, 43] compared to the main sci-
entifc work. Marine scientists may beneft from the development 
of tools that difer from the practices from conventional software 
engineering, and they generally do not want to spend their time 
with software engineering work when they could be working on 
scientifc questions. 

5.2 User Interface Design Priorities 
Based on our analysis, we propose three design priorities for user 
interfaces that integrate within current fragmented practices, and 
help work towards mitigating some of the negative aspects of frag-
mentation. As a whole, we do not see fragmentation as something 
to be solved or removed. It is inherent to the unique and valu-
able multidisciplinary nature of the feld, with both positive and 
negative aspects. For example, concerning F2, marine scientists 
beneft from a level of fexibility with their tool use practices when 
adapting software engineering concepts to scientifc contexts, yet 
the individuality of tool use practices may hamper collaboration. 
This has implications for the design of tools that integrate with 
fragmentation. 

5.2.1 Powerful and simple graphical user interfaces. We should not 
assume that all marine scientists will shift towards coding-based 
tools, because the feld is multidisciplinary, and because of difer-
ences in interest towards computational concepts (C1), and difer-
ences in training (C3). At the same time, some negative aspects 
of fragmentation are intensifed as the community tries to estab-
lish practices around tools that support concerns like fexibility, 
power, and reproducibility (C4, C5). For example, the expectation 
to learn coding can lead to incompatible tool use practices (F2), and 
resistance to unfamiliar coding-based tools (F3). Because software 
engineering concepts can be seen as relevant for addressing issues 
of open science and reproducibility in the natural sciences (e.g. [29]), 
the burden of implementing these software engineering practices 
is being put on the scientists, and design solutions are often framed 
in software engineering terms. Instead, as HCI researchers and 
designers, we should question this trend of depending on software 
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engineering concepts for scientifc tools. We suggest that creating 
GUI-based tools to address marine scientists’ concerns can help to 
mitigate the downsides of fragmentation brought on by the push 
towards coding-based approaches. This suggestion may lead to 
more fragmentation in that some people are using GUI-based tools 
whereas others are using code, but if interoperability is designed 
for, as we describe below, then this serves a benefcial form of frag-
mentation that enables people can focus on the types of work they 
are most interested in. 

To better suit marine scientists’ needs, graphical tools should be 
designed to address concerns like reproducibility, trust, and power 
(C4, C5). For reproducibility, graphical interfaces should support the 
ability to save interaction steps as a series of instructions that can 
be imported and replayed by other users of the tool. Such solutions 
could draw from the literature on version history systems for non-
code artifacts (e.g., [14, 48]). Interfaces should ensure that steps can 
be explored and annotated directly, enabling these steps to serve 
as documentation of process. For trust, graphical interfaces should 
provide more transparent representations of internal processes as 
needed, such as which algorithms are used and what assumptions 
are made when processing data. Interfaces could also be designed 
to increase the ease of containerizing research software, in the vein 
of systems like GUIdock [19]. For power, interfaces for marine 
scientists should support technical decisions and instill a feeling of 
competence. To avoid intimidation (F3) and support marine scien-
tists with learning tools rather than duplicating eforts (F4), tools 
should not present themselves as excessively complex. A marine 
scientist may have a scientifc goal in mind, but not have the ability 
to translate this into computational terms. Negative experiences, 
like P15’s frustration about diferences between mental models and 
computer data representations, and P22’s impression that she needs 
to ofoad technical work to collaborators, should not stand in the 
way of scientifc work. 

Interoperation and integration within existing tools should be 
prioritized, rather than creating new standalone tools that would 
require marine scientists to make signifcant changes to their pro-
cesses. Creating tools that interoperate with existing tools may 
make them easier for marine scientists to adopt, reducing the need 
for marine scientists to contribute to fragmentation by making their 
own tools from scratch to suit their needs (F4). There may also be 
reluctance to adopt new tools when existing tools are “good enough” 
(P17, F3). Creating new solutions that integrate into existing tools 
may increase the chance of adoption. We discuss this idea further 
in the third priority. 

To support open science and facilitate collaborative work be-
tween users of diferent tools, graphical tools should also be de-
signed to interoperate with code-based tools. Ideally, this means 
using widely-used data formats as the main data format (e.g., CSV, 
NetCDF). Where this is not possible, packages should be developed 
alongside graphical applications that allow their formats to created, 
read, and written from code. Also, code and GUI-based ways of 
working are not mutually exclusive. Our analysis provides exam-
ples of how code is often used within other GUI contexts, such 
as within computational notebooks (P14) or statistics tools (P8). 
We did not encounter instances where code was used to extend 
GUI functionality using macros, plugin systems, or similar. This is 
unsurprising because marine scientists who fnd such functionality 

useful may prefer to just switch to code-based tools for the added 
fexibility. However, allowing code extensions in GUI-based tools 
could be benefcial to support experienced coders when collaborat-
ing with scientists who prefer GUIs. If tool users are expected to 
be familiar with code, a more fexible interface (e.g., CLI-based tool 
for interfacing with the GUIs) would likely be preferred. 

5.2.2 Efecting an “an integrated development efort”. It is precisely 
because tools have a limited reach (F5) that they need to have an 
integrated development efort to help expand their reach. This 
means that system designers and scientists need to work together 
(e.g., via participatory design with scientists [7]) to help ensure that 
new tools meet scientists’ needs, and that excessive functionality 
or complexity is avoided. Practical usefulness and research nov-
elty from a systems point-of-view may be competing objectives. 
Based on our F5 fndings, some recommendations for system design 
include: having more frequent iteration cycles that engage with 
the users (e.g., concerning P23 iterating “mostly within the team” ), 
considering the assumptions being encoded in tools and whether 
relaxing them could serve a broader audience (e.g., for P17’s tool 
expecting human samples), determining user needs before (and dur-
ing) development (e.g., for P18’s library anecdote), and assessing 
which features are used in practice to fnd avenues for reducing 
the complexity of interfaces (e.g., for “fake cruise” search feature 
mentioned by P2). 

When designing tools, it is important to not assume that what 
works for other data workers will also work for marine scientists. 
Our fndings highlighted that past work that lumps people from 
heterogeneous felds under the umbrellas of “data science” or “data 
work” can obscure nuanced and unique aspects of specifc felds 
like marine science. For example, our participants would often 
themselves take data of equipment in non-standard proprietary 
formats, or take manual readings from equipment and measure-
ments in the feld. These practices may necessitate unique system 
designs for interfacing with equipment, transparently converting 
raw measurements, and converting data representations. As an-
other example, our participants often collaborated with colleagues 
with varying levels of coding ability, which could be supported 
by designs that strengthen communication of technical concepts 
between collaborators. 

Following from the earlier interoperability point, interactive 
system designers should not assume their systems are so niche 
that they can ignore the potential to make use of or integrate into 
existing systems. Because duplication of efort when creating new 
systems may be unavoidable due to external constraints (F4), it is 
also valuable to consider how interactive systems could be designed 
in the form of building blocks (e.g., common visualizations, data 
processing functionality, communication functionality) that can be 
reused within diferent marine science tools and contexts. 

5.2.3 Supporting discovery and connection. To address concerns 
around individualized views (F1) and duplication of efort when cre-
ating tools (F4), systems should be designed to increase awareness 
of alternative tools and unused capabilities of tools in use. 

One approach is to develop systems that integrate into existing 
tools or help interfaces, and provide insight into what tools one’s 
colleagues are using. As suggested by P18, it would be benefcial 
to know what tools one’s close colleagues trust, and new interface 
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designs to support this could draw from trust-based recommender 
systems (e.g. [54]). Another approach could be to design interfaces 
to teach or assist users with combining disparate packages or tools. 

Scientifc workfow systems, including those with graphical in-
terfaces (e.g., [1]), have been proposed in the literature in part to 
enable sharing of scientifc processes. Although our participants 
working in bioinformatics were familiar with the concept of sci-
entifc workfow systems (in the form of bioinformatics pipelines), 
such systems were mostly unfamiliar or perceived as too generic 
to our other participants. This suggests that enabling discovery of 
research artifacts at a more granular level than workfows could 
provide benefts to the community. Rather than sharing whole 
workfows, scientists could share smaller pieces of tasks, such as in-
dividual scripts, lines of code, cells from computational notebooks, 
or conceptual approaches. New system designs could draw from 
systems like “myExperiment” [13], a web service that supports so-
cial sharing of scientifc workfows. For example, systems could 
allow scientists to upload and search for pieces of scientifc tasks. 
A design challenge would be enabling efcient discovery of these 
pieces in a way that integrates into marine scientists’ existing pro-
cesses and tools. Further, as discussed in past work [5], scientists 
may be reluctant to take up new technology quickly or in a way 
that does not integrate with their existing tools or processes. Think-
ing about system design at the level of “workfows” may lead to 
designs that expect a large degree of change from users, hampering 
adoption. 

6 Conclusion and Future Work 
Based on an interview study of marine scientists and research sup-
ports, we constructed fve conceptual categories that characterize 
a broader concept we call fragmentation, which refers to isolated 
pockets of views and practices concerning software tools. 

In line with our constructivist approach, we see our fndings as 
situated to the context of the university of study and the domain of 
marine science. Investigating the practices of specifc domains is 
important, because it reveals the nuanced diferences from results 
suggested from more generic terms representing heterogeneous 
groups (e.g., “data scientist”). We saw these diferences in our fnd-
ings concerning tool documentation production, returning to old 
code, use of modular scripts, interest in but also resistance of unfa-
miliar tools, and reasons for doing things from scratch. However, 
for our concepts that have aspects relating to past work, we found 
considerable levels of agreement (e.g., the iterative nature of sci-
entifc analysis, that scientists do not see themselves as software 
developers, that scientists may avoid others’ tools). This suggests 
that our fragmentation concept may generalize to broader scientifc 
domains. A potential exception is disciplines in which computer 
science or software engineering training is more central, such as 
bioinformatics. 

As a whole, our concept of fragmentation characterizes how 
marine scientists are using software in practice, which includes 
positive aspects, such as how marine scientists successfully make 
use of software tools and have learned to adapt them for their 
needs, as well as aspects that could be improved through future 
work, such as concerns around awareness of what tools others are 
using, and duplication of efort when creating tools for others to use. 

Future work should not assume that all aspects of fragmentation 
are inherently in need of change. We proposed three priorities for 
user interface design: (1) exploring how graphical interfaces can 
be designed to address the software challenges that often result in 
turning to code-based solutions, (2) collaborating with scientists 
when creating tools, and (3) supporting scientists discover features 
within their tools and discover what other tools are being used. 
There is strong potential for HCI to contribute to the design of 
interactive systems that support marine scientists at a broad scale. 
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