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Abstract

We combine phytoplankton occurrence data for 119 species from the continuous plankton recorder with
climatological environmental variables in the North Atlantic to obtain ecological response functions of each
species using the MaxEnt statistical method. These response functions describe how the probability of occurrence
of each species changes as a function of environmental conditions and can be reduced to a simple description of
phytoplankton realized niches using the mean and standard deviation of each environmental variable, weighted
by its response function. Although there was substantial variation in the realized niche among species within
groups, the envelope of the realized niches of North Atlantic diatoms and dinoflagellates is mostly separate in
niche space.

The coming century will bring global and regional
changes in climate with numerous effects on marine
ecosystems. Changes in climate will affect the distribution
and productivity of phytoplankton in the ocean (Behren-
feld et al. 2006; Finkel et al. 2010). One tool for anticipating
these changes is the simulation of phytoplankton commu-
nities in global ocean models (Follows et al. 2007; Barton
et al. 2010). The diversity of phytoplankton is vast, so it is
difficult to know if the species usually incorporated into
such models adequately represent phytoplankton commu-
nities as a whole. The characterization of phytoplankton in
these models relies heavily on physiological parameters
obtained from laboratory experiments and may not be
representative of the niches occupied by phytoplankton
functional groups (Anderson 2005).

We propose that a broad perspective on phytoplankton
strategies is needed to investigate how phytoplankton will
respond to climate change, how the vast diversity of
phytoplankton should be simplified for modeling purposes,
and how the problem of adaptation to future scenarios
should be approached. Large field programs that sample
substantial diversity in the phytoplankton are a source of
data that can be used to address these questions. By
examining the range of responses to present environmental
conditions, we hope to gain an understanding of how
phytoplankton communities will respond to future climate
scenarios. The future ocean will be different from the
present, but many of these changes will be a matter of
degree (e.g., how much stratified ocean, the timing of the
shoaling of the mixed layer, and the location of phyto-
plankton blooms). It may be possible to predict primary
productivity and phytoplankton community composition
at the functional group level by treating the future ocean as
a rearrangement of conditions from the contemporary
ocean.

Our goal is to mine the continuous plankton recorder
(CPR) and climatological environmental data in the North
Atlantic to determine functions describing the probability
of species occurrence and to use these functions to
characterize the realized niche for each species. A species’
fundamental niche is the hypervolume in a space of
environmental variables where it can persist as a conse-
quence of its physiology, and its realized niche is a subset of
the fundamental niche where it is found and includes the
effects of ecological interactions (Hutchinson 1957; Kylafis
and Loreau 2011). Niches have already been identified for
two species of copepod using CPR data (Beaugrand and
Helaouet 2008). Obtaining a description of the realized
niche for many phytoplankton species will allow us to
observe the variability within functional groups and the
extent of differences between functional groups on average.
Variability across taxa in the response functions can be
used to guide the development of phytoplankton param-
eterizations in ocean simulation models. The probability
models could be used to develop statistical models
predicting the distribution of phytoplankton taxa in future
ocean climate scenarios.

Methods

The CPR survey conducted by the Sir Alister Hardy
Foundation for Ocean Science is the largest multi-decade
plankton monitoring program in the world, with over
200,000 samples and 2.5 million plankton abundance
counts from 1946 to 2004 and an additional 5000 samples
each year (Barnard et al. 2004; Beaugrand 2004; Richard-
son et al. 2006). The CPR sampling device is towed by ships
of opportunity at their conventional operating speeds at a
standard depth of 7 m and has changed little since the
initiation of the survey. Water enters through an opening
measuring 1.27 cm wide and flows down a tunnel that
increases in cross section, decreasing water pressure to
minimize damage to the organisms, and plankton are
filtered onto a constantly moving band of silk (270-mm
mesh size). The filtering silk is covered by a second band of
silk and is wound onto a spool into a storage tank
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containing formalin. This silk mesh captures many larger
phytoplankton species, predominantly diatoms and dino-
flagellates, as well as many smaller phytoplankton with
diameters as small as 10 mm. Clogging due to mucilage or
increased loading associated with high densities of plank-
ton may contribute to the number of small plankton
captured. Despite these challenges the CPR has been shown
(Richardson et al. 2006) to capture a consistent fraction of
the in situ abundance of the species assayed. Each CPR
sample represents a transect of 10 nautical miles, approx-
imately 3 m3 of water filtered, and all phytoplankton on the
silk are identified by trained experts under light micro-
scopes (54X–450X).

The CPR survey recommends that the species counts be
interpreted and analyzed as a semi-quantitative estimate of
abundance. Furthermore, the taxonomy data are collected
along transects through large survey regions, with sampling
effort varying across the North Atlantic and over time
(Richardson et al. 2006). In this study, we use observations
of phytoplankton taxa only as evidence of the presence of
the species in a particular month and the corresponding
standard CPR study area.

We analyzed a subset of the CPR data with 187
phytoplankton species, consisting primarily of diatoms
(97 spp.) and dinoflagellates (86 spp.), with monthly
observations over 60 years (1947–2006) and 41 standard
CPR survey regions. The sampling effort of the CPR
survey varied by year, month, and region, with most of the
variation across years, some geographic variation, and
relatively little month-to-month variation. We discarded 64
species with fewer than 10 observations in the entire data
set, plus the one cyanophyte, one silicoflagellate, and two
prasinophytes, as these groups were represented by very
few species. The presence data for any particular species are
very sparse since most species are not observed in most
locations and times. The total amount of data is very large:
there are 153,450 species observations over a total of 69
diatom and 50 dinoflagellate species used, and 45% of the
29,520 (5 12 3 60 3 41) combinations of months, years,
and regions were sampled. Although the number of
observations of each species varies greatly, from 10 to
9038, nearly all species were identified if present in each
sample throughout the time series.

We characterize phytoplankton realized niches using
statistical models combining the CPR taxonomic data with
environmental variables. The environmental data we used in
the model are sea surface temperature (SST, uC), salinity,
nitrate, phosphate, and silicate concentration (mmol L21) in
the upper 10 m from the World Ocean Atlas 2009 (Antonov
et al. 2010; Garcia et al. 2010; Locarnini et al. 2010); sea-surface
photosynthetically available irradiance (PAR, mmol m22 s21)
and light attenuation at 490 nm (k490, m21) from the SeaWiFS
project (oceancolor.gsfc.nasa.gov); and mixed layer depth
(MLD, m) (De Boyer Montégut et al. 2004).

We computed the mean irradiance over the mixed layer
as

1

MLD

ðMLD

0

PARe{k490zdz~
PAR

k490MLD
1{e{k490MLD
� �

ð1Þ

where z is the integration variable representing depth (m) in
the mixed layer. All data are averaged over the 41 standard
survey areas from the CPR project (www.sahfos.ac.uk/
data-archive/standard-areas.aspx) and averaged to produce
monthly climatologies. Although some data are available
for many years (e.g., SST, PAR), most data are only
available as monthly climatologies, and we did not want to
include yearly variation in some variables and not in others,
as this might bias the results and complicate their
interpretation. We include each year of CPR data as a
separate set of observations and pair these taxonomic data
with monthly climatological environmental data.

We analyze the combined taxonomic and environmental
data to establish a functional relationship between envi-
ronmental conditions and the probability of observing a
particular phytoplankton species. The MaxEnt method
(Phillips et al. 2006; Phillips and Dudı́k 2008) is a statistical
machine-learning technique that uses species presence data
together with coincident environmental data and the full
distribution of environmental data to estimate these
functional relationships. No data on species abundance or
absence are required. The name ‘MaxEnt’ refers to the
entropy maximization performed when estimating func-
tional relationships. Briefly, probability distribution func-
tions are estimated for the suite of observed environmental
conditions (predictor variables) known as background
data, f(x), and, using the species presence data, for
environmental conditions in which the individual species
are known to occur, f1(x). The presence data are separated
into training and testing subsets. The conditional proba-
bility of finding species i, P(yi 5 1 | x), in a particular
environment, x, is evaluated using Bayes’ theorem, as
follows:

P yi~1 xjð Þ~P yi~1ð Þf1 xð Þ=f xð Þ ð2Þ

where P(yi 5 1) is the probability that species i would be
found in a random sample, without regard to the
environment, and represents the overall prevalence of
species i. With abundance-only data this prevalence is not
known. The predicted logistic probabilities of the MaxEnt
method set P(yi 5 1) so that the probability of presence of
a species at a site where that species is found is, on average,
1/2 (Elith et al. 2011). Two species found in the same
environments will have the same predicted probabilities,
even if the relative abundance of the two species is very
different; this is a consequence of using presence-only data.
Here we are characterizing phytoplankton response curves
and looking for differences among species responses to
contrasting environments without regard to abundance.

The functions f(x) and f1(x) are sums of piecewise linear
and quadratic functions and products of these functions.
The version of MaxEnt we used (3.3.3e; www.cs.princeton.
edu/,schapire/maxent/) permitted discontinuous step
(threshold) functions, but we did not use them, as they
often produced physically unrealistic response functions,
likely as a result of overfitting to data. We used the default
regularization parameters to avoid the problem of over-
fitting sparse data (Elith et al. 2011), but some tendency to
overfit the data may remain (Warren and Seifert 2011). We
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produced two sets of models: one containing all of the
environmental predictors, for the purpose of predicting
species presence probabilities and assessing model utility,
and a second set of models using just one environmental
predictor at a time for the purpose of characterizing the
species response to each environmental condition individ-
ually, as recommended by the MaxEnt software and
tutorial (Phillips et al. 2004; Buermann et al. 2008;
Martı́nez-Freirı́a et al. 2008).

Since there are correlations between the predictors, the
response functions from the full multivariate model can be
difficult to interpret. Response functions generated from a
multivariate model must be averaged over the other
variables, producing a marginal response function, to
permit visualization, but this averaging hides the correlated
effects of the other variables. For example, nitrate and
phosphate concentrations are strongly positively correlat-
ed, and phosphate concentration does not vary much at a
constant nitrate concentration. So a marginal response
function for nitrate concentration will include the effects of
phosphate concentration. The univariate response function
for nitrate concentration, on the other hand, illustrates the
effect of changing nitrate concentration without accounting
for the changing phosphate concentration. For example,
for Coscinodiscus wailesii, the marginal response curves for
temperature, mean irradiance, nitrate concentration, and
phosphate concentration are all flat (results not shown),
apparently as a result of correlations with silicate concen-
tration. The signal of all those environmental variables is
included in the response curve for silicate concentration.
The univariate response functions show more easily
interpreted results; increased probability of occurrence
with increasing macronutrient concentrations and decreas-
ing mean irradiance and a broad—but not flat—temperature
response function. We examined the means of the marginal
response functions from the multivariate model and found
that with pairs of highly correlated environmental variables
(e.g., nitrate and phosphate) the MaxEnt model would
frequently attribute the vast majority of the variation to only
a few variables, leaving the response for the other variables
nearly flat. Phillips et al. (2004) caution that this may
happen: ‘‘from a flat profile we may not conclude that the
species distribution does not depend on the corresponding
variable since variables may be correlated and MaxEnt will
sometimes pick only one of the correlated variables.’’

The method does not require uniform sampling effort in
time or space, although inferences about environments with
fewer data may be less reliable, and extrapolations outside
observed environmental conditions are unwise. When sam-
pling, the observation of a species confirms presence, but non-
observation does not confirm absence, as the species may be
rare or difficult to sample. Using presence data to predict the
presence of the species as a function of environmental data is
intended to make efficient use of the presence data without
using potentially unreliable absence data. Biases in sampling,
whether a result of changes in effort (mostly inter-annual and
geographic for the CPR) or sampling effectiveness (some
species may be less readily sampled on the silk mesh) can
affect the modeled niche, but these biases should be greatly
reduced by not using absence data.

The models produced by the MaxEnt method are
complex and should be examined from several perspectives.
We report a measure of the quality of the model fit, the
relative importance of each predictor, sample response
functions, and summary statistics characterizing the niche
of each species.

The receiver operating characteristic (ROC) curve
(Fig. 1) summarizes the predictions of a MaxEnt model
and is further summarized by a single number, the area
under the ROC curve (AUC). Each point on the ROC
curve corresponds to a threshold probability dividing a
prediction of species presence from absence. The predicted
presences are used to estimate a true-positive and false-
positive rate for each prediction. For example, if the
threshold is low (e.g., species presence predicted if
probability . 0.1) then the true-positive rate will be close
to 100% but the false-positive rate will also be high. An
ideal ROC curve will be horizontal across the top of the
plot with an area of 1 under the curve. With presence data
used by MaxEnt there are no known species absence data,
so the false-positive rate is approximate and inferred from
predictions of species presence in the background data,
where observations are not known. We use the MaxEnt
estimation of the maximum possible AUC as a baseline for
the AUC; the maximum AUC is less than 1 as a result of
corrections for errors in the false-positive rate and is
sometimes less than the observed AUC. A random model
will have AUC 5 1/2, as it is essentially a coin toss used to
rank environmental suitability (Fig. 1, dotted line). The
AUC is computed for both the training data and the data
reserved for testing.

For each species, the importance of each environmental
predictor can be estimated by randomly permuting the
values of that variable across known presence and
background data. The model is reevaluated on the

Fig. 1. Receiver operating characteristic curve for MaxEnt
model of Ceratium hexacanthum. The solid line compares the true-
positive classification rate as an implicit function of the
approximate false-positive rate using a range of probability
thresholds to convert predicted logistic probabilities to presence
or absence predictions. The dashed line is a random coin-flipping
model. The area under the curve is 0.91.
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permuted data, and the resulting drop in AUC on the test
data, normalized to percentages, is used as a measure of the
importance of that variable to the model. Since some
environmental predictors are correlated, the contributions
should be interpreted with caution. Based on the results
from the entire suite of phytoplankton models and from the
diatoms and dinoflagellates separately, we estimate the
most important predictors by averaging the importance
and the rank importance for each model and computing
how frequently a predictor is ranked as the most important
of the seven considered.

The MaxEnt model provides estimates of the effect of
each environmental variable on the probability of presence
for each species, called response functions. We use logistic
scaling of the MaxEnt model output so that predictions are
confined to the range 0 to 1 and can be interpreted roughly
as the probability of species presence. Some response
functions are approximately Gaussian across the environ-
mental conditions and are well summarized by a mean and
variance, and others are truncated on the right or left,
skewed left or right, bimodal, or approximately flat over a
wide interval (Fig. 2). Examining response functions for
dozens of species would be challenging, so we use two

parameters to summarize the response functions: the mean
(m) and standard deviation (s) of each environmental
variable (x), weighted by the univariate response function
and defined by

m~

Ð
xf xð ÞdxÐ
f xð Þdx

ð3Þ

and

s2~

Ð
x{mð Þ2f xð ÞdxÐ

f xð Þdx
ð4Þ

We call these parameters the mean univariate realized
niche (or simply mean niche, m) and the breadth of the
niche (s). The vector of m and s for all environmental
variables represents the environmental conditions in which
a species is found, and we interpret them as a simple
description of a species’ realized niche. Distilling the
response functions down to these two parameters facilitates
the comparison of a large number of species, but the degree
of approximation involved varies by species. Since many of
the environmental variables are correlated (macronutrients,

Fig. 2. Univariate ecological response functions for the dinoflagellate Ceratium compressum
(solid line) and the diatom Odontella sinensis (dashed line), reported as the logistic probability of
occurrence as a function of (A) sea surface temperature (uC), (B) salinity, (C) nitrate
concentration in the upper 10 m (mmol L21), and (D) mean irradiance in the mixed layer
(mmol m22 s21).
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temperature, irradiance), the mean univariate realized
niches must be interpreted with caution as they will include
information both from the direct response to the focal
variable and the response associated with changes in
correlated variables. At the functional group level, we test
the null hypothesis that the mean of the environmental
response functions for each environmental variable is the
same for diatoms and dinoflagellates using a t-test with
Welch correction for unequal variances (R Development
Core Team 2011).

We use the ratio of the breadth of the niche to the range
of environmental conditions in the North Atlantic to
characterize a species as either a specialist or generalist,
depending on whether the breadth of the niche at half its
maximum value extends over less or more than 40% of the
full range of the predictor in the North Atlantic; a specialist
species will have 2.35 s (predictor range)21 , 0.40. While
this threshold is somewhat arbitrary, it provides a
consistent guide for comparing the degree of specialization
or generalization to different environmental conditions. We
estimate a 95% confidence interval on the mean, m, and
breadth, s, of the niche for each species and environmental
variable using 500 models for each species. The replicate
models are constructed with random resampling of the data
(bootstrapping), as built into the MaxEnt software. Finally,
since the CPR data extend over 60 yr and we are using
climatological environmental conditions, we were con-
cerned that the mean environments for each species may
have appeared to change because the phytoplankton data
have year-to-year variation, but the environmental data do
not. We computed MaxEnt models for the first 30 yr
(1947–1976) and the last 30 yr (1977–2006) and compared
the mean niches for all species found in both periods.

Results

A simple measure of the skill of a MaxEnt model is the
AUC. For our 119 models, the AUC ranged from 60% to
99%, with a median of 84%. Since we do not have species
absence data, we cannot assess the false-positive rate
(Fig. 1) exactly, and as a consequence, the best possible
AUC will be less than 100%. Species observed more
frequently in the CPR data set tend to have smaller AUC
because of the difficulty in estimating the false-positive
rate. The AUC values for testing data were in all cases
within a few percent of the AUC values for the training
data and the estimated maximum possible AUC. All of our
MaxEnt models do a good job of predicting the observed
presence data according to the AUC metric.

We can assess how important an environmental variable
is to a model by permuting the data for that variable at
random and observing the percentage decrease in the AUC.
We report three different measures of the average
importance of each environmental variable: The percentage
decrease in AUC when the environmental variable is
omitted, which we call the importance, averaged over
species; the mean rank (1–7) of each environmental
variable’s importance; and the percentage of species for
which that environmental variable is most important
(Table 1). We report each statistic for all species, for
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diatoms, and for dinoflagellates. Generally, (MLD)21 was
the most important predictor, followed by salinity,
followed closely by SST and mean irradiance, but there
are notable differences between diatoms and dinoflagel-
lates. Salinity was more important for dinoflagellates than
for diatoms, while mean irradiance was more important for
diatoms. Macronutrient concentrations (nitrate, phos-
phate, and silicate) were the least important variables,
accounting for less than 25% of the aggregate importance
and less than 10% for each nutrient.

The phytoplankton realized niches are described by the
mean and breadth of the niche for each environmental
variable (Fig. 3). The 95% confidence intervals on some
points are quite large, but close examination indicates that
many species’ niches are well estimated and do not overlap
the majority of other species’ niches. Diatoms and
dinoflagellates have distinct niches for each environmental
variable, although there is some overlap between the cloud
of points for each functional group. Most dinoflagellate
species are found in warmer and saltier waters with lower
nutrient concentration and higher mean irradiance in the
mixed layer, compared with diatoms (Figs. 2, 3). The mean
niche differs between the diatoms and dinoflagellates for
each environmental variable (t-test, p , 1025 [R Develop-
ment Core Team 2011]). For some variables (SST,
phosphate) the number of species with a particular mean
niche seems to be approximately proportional to the
abundance of habitat (histograms in Fig. 3A,D), while

for the other variables (particularly salinity, nitrate and
silicate concentration, and mean irradiance) the most
abundant environments often have the fewest species, with
a corresponding mean niche.

Many species are generalists (high s), so that their
univariate niches extend over much of the observed range
of each environmental variable (above the dotted line in
Fig. 3). There are no low-temperature or low-salinity
specialists, but there are some specialists at high temper-
atures or high salinities, most of which are dinoflagellates.
All nutrient specialists have mean niche toward the low end
of nutrient concentrations observed and are almost all
dinoflagellates. Mean irradiance specialists are all diatoms,
and as for nutrient concentration, all have mean niches at
the lower resource levels. Dinoflagellates have broader
salinity niches than do diatoms at the same mean niche, but
the reverse is true for mean irradiance, in which diatoms
have broader niches.

Species with mean niches at intermediate environmental
conditions tend to have broader niches than do species with
mean niches at the high or low extremes of the environ-
ments sampled (Fig. 3). Species with broad niches are
relatively insensitive to variation in that environmental
variable and have mean niches near the middle of the range
of observed environments. Species with mean niches near
the edge of the observed range of environments are likely to
have narrow niches. Response functions for SST are
frequently not Gaussian and can be skewed for cold (e.g.,

Fig. 3. Mean and breadth of the univariate realized niche (Eqs. 3 and 4) for (A) SST (uC), (B) surface salinity, (C) surface nitrate
(mmol L21), (D) surface phosphate (mmol L21), (E) surface silicate (mmol L21), and (F) mean irradiance over the mixed layer (mmol m22 s21) for
69 diatoms (open red circles) and 50 dinoflagellates (filled green circles). Colored lines indicate the 95% confidence interval on each parameter
from bootstrap resampling. The histograms at the bottom of each figure show the relative abundance of background data. The dashed line
separates generalist (above the line) and specialist species (see Methods). Data available online (doi.pangaea.de/10.1594/PANGAEA.778968).
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Ceratium arcticum)– or warm (e.g., Ceratium belone)– water
species, supporting the observation of narrower niches in
extreme environments. The observed SST values range
from 21.2uC to 21.8uC (s , 7), so the species with the
smallest mean SST niche (5uC) is not forced to be a
specialist.

A species’ niche for one environmental variable may be
related to its niche for another variable, but such
relationships are obscured when examining one variable
at a time (Fig. 3). Furthermore, relationships between
niches for pairs of environmental variables may be
common across all species in the study or may vary across
functional groups. Comparing the species’ mean niches by
two variables at a time makes it possible to observe
relationships between niches for those environmental
variables (Fig. 4). We overlay these points on a gray
background of the observed environmental data to
facilitate comparison between the mean niches for each
species and the range of variation of the corresponding
environmental variables. Diatoms and many dinoflagellates
are clustered near the center of the salinity–SST graph,
while the high-salinity specialists stand out clearly from the
cloud of species (Fig. 4A). There is an anti-correlation
between mean nitrate and temperature niches and between
mean nitrate and mean irradiance niches (Fig. 4B,C),
which mirrors the anti-correlations between these pairs of
variables in the environment. Unlike temperature and
salinity, the cloud of points representing the mean niches

for temperature, irradiance, and nitrate concentration are
against the edge or even outside the range of observed
environments. Few species have mean nitrate and mean
phosphate niches that deviate from the nitrogen : pho-
sphorus (N : P) Redfield ratio of 16 : 1 (Fig. 4D), although
diatoms seem to thrive in environments with N : P . 16.
The ratio of mean nitrate to mean silicate niches is about
1.6 : 1 (reduced major axis regression), with some dinofla-
gellates found at relatively high N : silicon (Si) (Fig. 4E).
Species mean niches are in the middle of the background
cloud for N : Si, as opposed to being at the high N edge of
the N : P cloud. Diatoms and dinoflagellates are separated
by both mean irradiance in the mixed layer and by the
reciprocal of the mixed layer depth (Fig. 4F). (We use
[MLD]21 instead of MLD since the distribution of MLD is
more strongly skewed than that of [MLD]21.) While these
variables are autocorrelated, there is also an anti-correla-
tion between sea–surface PAR and MLD, which spreads
the niches out over a wider range for mean irradiance, and
using both variables simultaneously improves the separa-
tion of the functional groups. As with other pairs of
variables, except nitrate and silicate concentration, there is
a clear bias in the mean niches away from the most
abundant, but less desirable, environmental conditions.

The mean niches for each species were similar in the first
half of the study compared to the mean niches in the second
half, with the largest deviations (more than 15%) appearing
in species with fewer than 1000 observations. The

Fig. 4. Mean niches of pairs of environmental variables for each species (diatoms in open red circles, dinoflagellates in filled green
circles) against the background distribution of climatological environments (overlapping gray squares). Pairs of variables are (A) SST
(uC) and salinity, (B) SST and nitrate concentration (mmol L21), (C) mean irradiance (mmol m22 s21) and nitrate, (D) nitrate and
16?phosphate (mmol L21) with a 1 : 1 Redfield line, (E) nitrate and silicate concentration (mmol L21) with a regression line through the
niches, and (F) mean irradiance and (MLD)21 (m21). Colored lines indicate the 95% confidence interval on each parameter.
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correlations between mean niches from 1947–1976 and
1977–2006 were strong for most environmental variables
for the 69 species with at least 40 observations in each time
period; the R2 values were 0.85, 0.82, 0.75, 0.71, 0.73, and
0.60 for SST, phosphate, silicate, nitrate, mean irradiance,
and salinity, respectively. There have been documented
changes in the relative abundance of diatoms and
dinoflagellates (Leterme et al. 2005) and in the relative
timing of the maximum density of phytoplankton and
zooplankton (Edwards and Richardson 2004). Our analysis
shows that the species occurrence niches are robust on the
half-century timescale when sufficient data are available.

Discussion

Components of the fundamental niche for some factors,
such as nitrate concentration, irradiance, and temperature,
have been compiled for a few species from laboratory
studies (Sarthou et al. 2005; Litchman et al. 2007; Litchman
and Klausmeier 2008). Even with all the work that has been
done, we have only begun to sample the tremendous
taxonomic diversity known to be present in the ocean and
the myriad biotic and abiotic factors that may influence
phytoplankton niches. Furthermore, it is not clear how
successful lab-based physiological traits will be in predict-
ing phytoplankton distributions in the field. Here we use a
statistical approach to extract the realized niches of 119
phytoplankton species from the field using the CPR data
set (153,450 observations of species presence) and monthly
climatologies of environmental conditions. We estimate the
probability distribution of each species’ presence as a
function of each environmental variable and further
summarize each probability distribution by its mean and
breadth (Fig. 3), which we refer to as the species’ realized
univariate environmental niche. Below we discuss the most
important environmental predictors for individual species’
presence, variation in the mean and breadth of the realized
niche with variation in environmental conditions, and
taxonomic differences in the niches of diatoms and
dinoflagellates.

Salinity, MLD, mean irradiance in the mixed layer, and
temperature are the most important predictors of individ-
ual phytoplankton species presence, with macronutrient
concentrations the least important (Table 1). Laboratory
experiments have established that there are significant
differences in growth rate across species as a function of
salinity (Braarud 1951; Balzano et al. 2011), temperature
(Eppley 1972; Brand et al. 1981; Moisan et al. 2002),
irradiance (Geider et al. 1986; Rodriguez et al. 2005;
Schwaderer et al. 2011), and nutrient concentrations
(Eppley et al. 1969; Hein et al. 1995). One might expect
nutrient concentrations to be most informative in deter-
mining the presence or absence of a particular phytoplank-
ton species (Litchman et al. 2007) as much of the North
Atlantic is nitrate limited. There are several potential
reasons for this inversion of expectations: salinity, irradi-
ance in the mixed layer, and temperature may directly
affect phytoplankton community structure as a result of
species-specific physiological responses to these environ-
mental conditions; the physical factors (salinity, MLD, and

SST) may be correlated with important predictive factors
not included in the model, such as nutrient supply rate,
short-term environmental variability, and grazing; and SST
is often highly correlated with nutrient supply rates to
phytoplankton in the surface (Kamykowski et al. 2002).
The importance of temperature, salinity, and irradiance has
been noted in other studies: temperature and salinity
tended to be better predictors than were macronutrient
concentrations for phytoplankton community structure
(1984–2001) in the Baltic Sea (Gasiunaite et al. 2005),
and the distributions of Procholorococcus ecotypes follow
changes in temperature and irradiance consistent with
physiological responses (Johnson et al. 2006).

The phytoplankton niches estimated here are nonran-
dom subsets of the environment conditions (histograms in
Fig. 3 and gray background in Fig. 4) prevalent in the
North Atlantic, confirming the importance of physiological
differences and ecological interactions in shaping the
taxonomic structure of phytoplankton communities. If
species were randomly distributed with respect to environ-
mental conditions the mean of the species’ niches should
aggregate toward the center of the environmental data. In
contrast, species’ mean niches are distributed across much,
but not all, of the environmental data. In addition, niche
breadth for the individual environmental variables tends to
vary systematically across several of the environmental
conditions examined. For example, niche breadths tend to
be narrower under lower temperatures (often correlated
with low nutrient supply rates), higher salinities, lower
macronutrient concentrations, and very low irradiances in
the mixed layer (Fig. 3), perhaps reflecting increased niche
specialization under resource scarcity (although some of
this may be due to edge effects; see Results). A high
proportion of species have their mean niche for nutrient
concentrations under high concentrations, especially rela-
tive to the frequency distribution of these environmental
conditions (Fig. 4). The higher diversity of species found
under higher nutrient concentrations, and at lower
temperatures, might be a function of the higher biomasses
that can be supported when nutrient concentrations and
supply rates are high.

Correlation in the mean and breadth of the realized
niches for each individual environmental variable can
sometimes be attributed to underlying co-variation in the
distribution of environmental conditions in the North
Atlantic. For example, dinoflagellates have nearly the same
silicate : nitrate niche ratios as diatoms, despite having no
requirement for silicate. This pattern is caused by the co-
variation of Si concentration with the concentration and
supply rates of nitrate and phosphate. Macronutrient
concentrations are highly correlated with one another and
inversely correlated with sea surface temperature and
irradiance in the mixed layer. As a consequence, species
specializing in low concentrations of one macronutrient are
likely to specialize in low concentrations of the other
macronutrients as well and will likely be exposed to higher
temperatures and higher irradiances in the mixed layer.
Among the nutrient specialists, 10 species do not specialize
on a temperature, but the majority (18 species) do specialize
on temperature as well. The specializations are not
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randomly associated: 13 species (11% of all species) are
specialists for four to six of the variables examined, but a
simulation of randomly assorting specializations predicts
this would happen only in 0.5% of the species. There are
physiological challenges for phytoplankton species under
low nutrient concentrations, low irradiances, and extreme
salinities and temperatures that limit the distribution of
niches. For example, in these data we see that there are no
phytoplankton species’ exploiting the abundant low light
habitat below , 5 mmol m22 s21 (Fig. 4); this is below the
compensation point for most phytoplankton.

The niches for each species clearly separate out the
diatoms and dinoflagellates, reflecting the fundamental
physiological and ecological differences between diatoms
and dinoflagellates that structure communities. Compared
with dinoflagellates, diatoms are more likely to be found in
waters with colder temperatures, lower salinity, higher
macronutrient concentrations, and lower mean irradiance.
Although these niches are fundamentally ecological, our
results mirror physiological differences quantified from
laboratory experiments (Litchman et al. 2007), such as
growth inhibition in dinoflagellates in response to shear
and turbulent mixing (Peters and Marrase 2000) and
tolerance of low irradiance in diatoms (Geider et al.
1986). Dinoflagellates are much more likely to specialize
in one or more variables (29 specialist species, or 58%) than
are the diatoms (13 specialist species, or 19%); this result is
consistent with those of previous studies (Smayda and
Reynolds 2001). The differences between and variation
within the groups indicate that there is evolutionary
selection acting to separate strategies at the functional
group and species level but that fundamental physiological
characteristics of the functional groups constrain the niche
variation. Although there is a strong signal separating these
functional groups on these predictors, there is still a great
deal of variability within the groups and substantial overlap
between the niches at the interface between the two groups.
These results provide additional evidence that the use of
diatoms and dinoflagellates as separate functional groups
within ecological and biogeochemical models has a rational
basis but that the variability within the groups should be
explored (Follows et al. 2007), as guided by these results.

Our analysis appears to document trade-offs in the
niches of several pairs of environmental data across species:
the niches for nitrate concentration and mean irradiance
and nitrate concentration and temperature are anti-
correlated (Fig. 4). Since this is a statistical and observa-
tional study, attributing the cause of these correlations to
physiological characteristics or environmental forcing is
difficult. There may be physiological trade-offs between
maximum uptake rate and half-saturation constants for
nitrate and between R* (a measure of competitive ability at
equilibrium) and maximum growth rate in phytoplankton
(Litchman et al. 2007). Since warmer temperatures are
associated with increased stability and lower nitrate
concentrations in the ocean, we might expect species with
low half-saturation constants and low R* to dominate
warmer waters; conversely, lower temperatures should
favor species with greater maximum uptake rates to exploit
increased nutrient flux from mixing and reduce the

importance of half-saturation constants and R*. Thus, there
may be a physiological basis, grounded in nutrient uptake
kinetics, for the niche differentiation we observe in SST. We
observe that species with low nitrate niches tend to have high
irradiance niches and vice versa, and this distinction
separates the diatoms (low light) and dinoflagellates (low
nitrate concentrations). Mixotrophic and heterotrophic
dinoflagellates have access to nutrient resources that are
unavailable to diatoms, but they may require extra energy
for handling, while under low light, autotrophic phyto-
plankton require more nitrogen for their pigment protein
complexes, indicating a physiological basis for an irradi-
ance–nitrate trade-off (Harrison et al. 1990). While this
trade-off appears in the environment as well, there is a great
deal of habitat simultaneously low in nitrate concentration
and mean irradiance that is not used by dinoflagellates or
diatoms. The absence of diatoms and dinoflagellates with
niches low in both macronutrients and irradiance is a
consequence of the fact that many of these species are
relatively resource intensive compared to many of the low-
resource species not observed by the CPR (Raven et al.
2006). Diatoms and dinoflagellates are forced into a trade-
off between light and nitrate concentration by the available
habitat and physiological adaptations contributing to the
fundamental differences between these functional groups.

We have characterized the realized niches for a diverse
collection of diatoms and dinoflagellates in the North
Atlantic. Diatoms tend to be found in cooler waters with
deeper mixed layers and lower mean irradiance, while
dinoflagellates tend to favor warmer waters with shallower
mixed layers and higher mean irradiance. Although
diatoms and dinoflagellates are clearly broadly distinguish-
able by their niches, there is a great deal of variation among
species within these large taxonomic groups. These niches
could be used to predict biogeographic distributions of
phytoplankton species and to anticipate shifts in commu-
nity structure that may result from changing environmental
conditions and climate. Important caveats are that the
emergence of novel habitats, the introduction of invading
phytoplankton or grazers, or mismatch between predators
and prey (Edwards and Richardson 2004) could alter
ecological niches and complicate future predictions (Ed-
wards et al. 2001; Reid et al. 2007; Williams and Jackson
2007). Differences in niches between grazers and primary
producers have led to phenological shifts and cascading
consequences throughout the food web as climate changes
(Edwards and Richardson 2004). Predictive models of
phytoplankton responses to changing climate should
include some of this diversity or they will run the risk of
making unrealistic predictions limited by a lack of diversity
in species responses to the environment.
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