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Mathematical models of photosynthesis–irradiance relationships in phytoplankton are used to
compute integrated water-column photosynthetic rates and predict primary production. Models
typically ignore an important phenomenon observed in most experiments: photosynthetic rate
remains constant over a range of irradiances before declining due to photoinhibition. Here we develop
an approach that captures both photoinhibition and this plateau. We test six new models of
photoinhibition and ten more photoinhibition models from the literature against a database of 1808
photosynthesis–irradiance curves exhibiting photoinhibition. The bestmodel improves adjustedR² by
6–37% and reduces RMSE by 15–70% compared to existing models. In the best model,
photoinhibition is phenomenologically described by multiplication by a saturating function of the
reciprocal of irradiance, simplifies to the widely-used Jassby & Platt photosynthesis–irradiance curve
in the absence of photoinhibition, and only requires one new parameter. This photoinhibition
parameter identifies the onset of photoinhibition and is the rate of decrease in photosynthetic rate at
that irradiance. Simulations show that while parameter values vary up to 40%across existingmodels,
particularly with and without photoinhibition, our representation of photoinhibition does not affect the
interpretation or numerical values of parameters compared to the corresponding model without
photoinhibition.

Predictions of photosynthetic rates of phytoplankton are used in estimates
of water-column integrated primary production over large areas1–4 and
ecosystem models5,6. The photosynthesis–irradiance (PI) curve is an
important mathematical model underlying these computations. Parameter
values in the PI curve are generally determined from statistical analysis of
measured rates of photosynthesis from light incubation experiments. Many
formulations of PI curves have been developed and several competing
models are commonly used7,8. A comprehensive list of existing PI curve
models is provided in Table S1 among which three commonly used for-
mulations for photosynthetic rate, P (mol C (mg chl a)−1 h−1), as a function
of irradiance, I (μmol photons m−2 s−1), are

P ¼ Pmax tanhðαI=PmaxÞ; ð1aÞ

P ¼ Pmaxð1� expð�αI=PmaxÞÞ; and ð1bÞ

P ¼ PmaxI=ðIþ Pmax=αÞ; ð1cÞ
where the photosynthetic efficiency at low light is described by α and the
photosynthetic capacity (maximum rate of photosynthesis) is Pmax

9–11.

Photosynthetic rate is typically measured by the incorporation of radi-
olabeled bicarbonate into organic biomass and reported normalized to
chlorophyll a content as a proxy for phytoplankton biomass. The derived
parameter Pmax/α, commonly referred to as Ik or Ek, is frequently used to
approximate the irradiance at which photosynthesis becomes light-
saturated. In this study, we refer to this parameter as Iα to emphasize its
dependence on the photosynthetic efficiency parameter at low light level, α.
The parameter α can be written as the product of the chlorophyll-
normalized absorption cross-section, a* (m2 (mg chl a)−1), the quantum
yield of photosynthesis, ϕ, equal to the ratio of the mol of organic C or O2

produced to the mol of photons absorbed, and a unit conversion constant.
Photosynthetic rate generally increases nearly linearly as irradiance
increases under low light, then reaches a maximum rate. At relatively high
irradiance, increasing light reduces the photosynthetic rate. The formulas in
Eq. (1) do not describe a decrease in photosynthetic rate with increasing
irradiance, so if a decrease is observed in data, there will be bias in the
estimated parameters.

Photoinhibition is a general term for the reduction of photosynthetic
rate with increasing irradiance at relatively high irradiance, but it is a
composite phenomenon arising frommanydistinct processes. Photosystem
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II is susceptible to light-dependent photoinactivation which can be coun-
tered by repair with associated metabolic and opportunity costs12,13. The
magnitude of the observed decrease in photosynthetic rate can increasewith
the duration of exposure to high light as this repair capacity is overwhelmed.
Phytoplankton can acclimate to incident irradiance by remodeling their
photosynthetic apparatus, in particular the amount of chlorophyll a,
accessory and photoprotective pigments, altering the photosynthetic effi-
ciency and quantum yield with non-photochemical quenching, adjusting
maximum photosynthetic capacity and the irradiance at the onset of
photoinhibition14. Individual taxa in the community will vary in their
capacity to use each of these mechanisms. Mechanisms such as photo-
inactivation operate at all irradiances, including very low levels, while other
processes and the aggregate effect of photoinhibition are typically only
observed at irradiances exceeding the saturating irradiance. The observed
photosynthesis–irradiance response of a natural community of phyto-
plankton is thus a complex synthesis of many mechanisms, the taxonomic
compositionof the community, and thehistory of light andother conditions
and resources needed for photosynthesis and acclimation (e.g., temperature,
nutrient concentrations).

To simplify this complexity, a variety of simple empirical models to
parameterize photoinhibition have been developed (Table 1). The most
widely used approach incorporates an exponential function to represent the
photoinhibition component. This exponential term is typically multiplied
with light-saturating models (i.e., those listed in Table S1 and Eq. 1) to
capture the shape of the PI curve in the presence of photoinhibition. The use
of an exponential function tomodel photoinhibitionwasfirst introduced by
Steele in 196215 and has since been adapted into several empirical for-
mulations to better fit observed data and enable estimation of the photo-
inhibition parameter, β (Table 1). A commonly used formulation for
modeling thePI curvewithphotoinhibition is the product of Eq. (1b) and an
exponential decay term, expð�βI=PsÞ:

P ¼ Psð1� expð�αI=PsÞÞ expð�βI=PsÞ ð2Þ

where β is a photoinhibition parameter with the same units as α, and Pmax is
replaced with Ps to indicate that it no longer represents the empirically
observed maximum photosynthetic rate, but rather the theoretical max-
imum photosynthetic rate16,17. To estimate the true photosynthetic capacity
(Pmax), one must first estimate Ps from data and then numerically derive
Pmax using a formula such as the ones provided in Table S2. The estimate of
Pmax is susceptible to error propagation and bias from the estimates of
parameters α and β potentially leading to bias in estimates of primary
production in the water column.

In commonly used PI curve formulations that incorporate photo-
inhibition (e.g., Eq. 2) photodamage begins at the lowest irradiances, gra-
dually overwhelms the advantages of increasing irradiance, and eventually
photosynthetic rate decreases exponentially with increasing irradiance. The
PI curve has amaximum achieved photosynthetic rate at a single irradiance
and photosynthetic rate then immediately decreases with further increases
in irradiance (Fig. 1, top panel). Phytoplankton are typically able to achieve
their maximumphotosynthetic rate over a wide range of irradiances, which
we call a plateau in the PI curve (Fig. 1, bottom panel)18,19, but Eq. (2) is not
able to describe this plateau. All models without photoinhibition incorpo-
rate a plateau, but only twophotoinhibitionmodels in the literature describe
a plateau. One approach is a piecewise function with a constant plateau20,
but there is rarely enough data to accurately determine the irradiance where
the plateau joins the decreasing part of the curve. A second approach
incorporates an additional shape parameter, even when photoinhibition is
not present21.

We develop a PI curve model that accurately captures the plateau
region of the PI curve in the presence of photoinhibition, while seamlessly
simplifying to anestablishedPI formulationwhenphotoinhibition is absent.
The model is designed so that photoinhibition does not alter the inter-
pretation of other key parameters, all parameters can be reliably estimated
from typical datasets with minimal propagation of error, and to have a

simple geometric interpretation of the photoinhibition parameter.
We propose to model the plateau in photosynthetic rate by multiplying
the saturating function describing light-limited and light-saturated
photosynthesis (Eq. 1) by a saturating function evaluated at the reciprocal
of irradiance. The effect of using the reciprocal irradiance is to
reduce photosynthetic rate as irradiance increases and the effect of the
saturating function is to enable a plateau and the simplification to the
original model in the absence of photoinhibition. Our new phenomen-
ological model is

P ¼ Pmax tanh
αI
Pmax

� �
tanh

Pmax

βI

� �γ� �
; ð3Þ

Table 1 | Established and new photoinhibition models
formulated with the parameters Pmax, Iα, Iβ, Ps; I

s
α; I

s
β and a

shape parameter γ

Name Equation

Established 3 parameter model

Steele15

Ps
I
Isα

� �
e
1� I

Isα

� �

Established 4 parameter models

Peeters and Eilers28

Ps I=Isα
� �

1þ I
Isα
þ I2

Isα I
s
β

� ��1

Platt et al.16 Ps 1� e�I=Isα
� �

e�I=Isβ

Neale and Richerson20
Ps tanh ðI=IsαÞe�I=Isβ

Baly*9
Ps

I
IþIsα

� �
e�I=Isβ

Smith*32

Ps
Iffiffiffiffiffiffiffiffiffiffiffiffiffi

I2þ Isαð Þ2
p
 !

e�I=Isβ

Blackman*33

Pmax

I=Iα; ifI<Iα
1; ifIα � I<Iβ

1� I� Iβ
� �

=Iβ; ifIβ � I

8><
>:

Established 5 parameter models (with shape parameter 0 < γ < 1 for models
marked witha)

Bannister*26

Ps
Iffiffiffiffiffiffiffiffiffiffiffiffiffi

Iγþ Isαð Þγγ
p
 !

e�I=Isβ

Prioul and Chartier*25 a
Ps
2γ

~I�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~I
2 � 4γI=Isα

q� �
e�I=Iβ where~I ¼ 1þ I=Isα

� �

Fasham and Platt21a Ps
2γ

~I�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~I
2 � 4γI=Isα

q� �

where~I ¼ 1þ I
Isα

� �
γþ 1� γ

� �
eI=I

s
β

� �

New models

Amirian
Pmax tanh I=Iα

� �
tanh Iβ=I

� �cosh2 ð1Þ� �

exp-tanh
Pmax 1� e�I=Iα

� �
tanh Iβ=I

� �cosh2 ð1Þ� �

tanh-exp Pmax tanh I=Iα
� �

1� e�Iβ=I
� �

exp-exp Pmax 1� e�I=Iα
� �

1� e�Iβ=I
� �

tanh-tanh-γ Pmax tanh I=Iα
� �

tanh Iβ=I
� �γ� �

exp-tanh-γ Pmax 1� e�I=Iα
� �

tanh Iβ=I
� �γ� �

Established models are identified by reference and new models are identified by name (Amirian) or
functional form (e.g., exp-tanh). Models marked with a star (*) did not originally incorporate
photoinhibition and have been modified.
In many models Pmax is replaced with Ps as this factor does not represent the photosynthetic
capacity; irradiance parameters have an s superscript since they are defined using Ps instead of
Pmax, and Pmax must be computed from Ps as shown in Table S2. All models are fit with a constant
intercept, R, which was omitted from the table.
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where β and Iβ = Pmax/β are parameters describing the rate and onset of
photoinhibition analogous to the efficiency parameter, α, and saturation
irradiance, Iα, with the same units as those parameters (Fig. S8). We
included a dimensionless shape parameter, γ, for additional flexibility, but
our analysis will support a fixed value for γ. The second tanh factor is
approximately 1 at sub-saturating irradiance so that the effect of
photoinhibition is absent at low irradiance (Fig. S8, right panel). Here we
test this model and several variations that combine our idea with existing
models together with severalmodels from the literature and show the utility
of ournewmodel.Weevaluate 16models statistically ona largedata set ofPI
experiments, determine the best model and importance of the plateau, and
compare the interpretation of PI parameters across the models.

Materials and methods
Model selection and development
We developed a set of models to test based on models in the literature and
our ideas (Table 1). First, we selected the most widely used photoinhibition
model that combines the exponential model of light-saturated photo-
synthesis and the exponentialmodel of photoinhibition (Eq. 2).We added a
variety of influential photoinhibition models from the literature selected
based on their prevalence in the literature and the diversity of algebraic
formulation. To increase the pool of models, we created some new models
that combined existing models of light-saturated photosynthesis and
exponential photoinhibition that we did not find in the literature. We
included our new model (Eq. 3) and five variations incorporating our key
idea of using reciprocal irradiance with two light-saturatingmodels (Eq. 1a,
1b) and using those two saturating functions to describe the onset of pho-
toinhibition, plus an optional shape parameter (SupplementalMethods) All
models included a constant intercept, R, to allow for error in the mea-
surement from the dark bottle and respiration. The models have many
similarities although they vary in algebraic complexity and the number (3 to
5) of parameters.

PI data sets
We compiled PI curves collected from 1973–2022 by scientists at Fisheries
and Oceans (DFO) Canada. To ensure data integrity, we implemented
quality control measures to remove errors found in electronic data tables
and cruise reports (removing duplicates, combining data from multiple
sources, correcting errors, ensuring consistent units). The dataset consists of
3641 PI incubation experiments gathered from 1304 locations, pre-
dominantly situated in the northern hemisphere (Fig. S1).
Photosynthesis–irradiance curves were obtained from phytoplankton
community samples gathered inNiskin bottles at two depths (typically near
surface 0–10m and sub-surface 10–50m), returned to the deck of the ship,
spiked with 14C-labeled bicarbonate, and incubated for 2–6 h (typically 4 h)
under a 150W floodlight. A dark bottle was used as a blank. The tem-
perature inside the incubator was controlled by pumping seawater through
the incubator. Methods changed little over the collection period; for more
details, see Irwin et al.22. Photosynthetic rates and the photosynthetic
capacity (mg C (mg chl-a)−1 h−1) are normalized to biomass quantified as
chlorophyll a concentration (mg chl-a m−3) as it is the easiest measure of
phytoplankton biomass to obtain. Irradiance has been converted to μmol
photonsm−2 s−1 from the energy units (Wm−2) used inmost of the original
reports. For the typical incubation light source used in these experiments,
energy units can be converted to photosynthetically active photons
(400–700 nm) using the approximation 1W ≈ 4.6 μmol s−1. Incubation
light sources changed several times17 but we did not correct the energy-
quanta conversion or the photosynthetic efficiency23 for changes in the
spectrum of the light source.

Statistical analysis
We classified each PI curve according to whether the data exhibit just the
linear response, a saturating response, or a saturating response extending
into photoinhibition (Supplemental methods). We used only PI curves
classified as exhibiting photoinhibition for subsequent analyses since a

Fig. 1 | Data from two photosynthesis–irradiance
experiments exhibiting different degrees of pho-
toinhibition. Points are data21, lines are model
fits (Eq. 2).
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comparison of photoinhibition models on data that do not exhibit photo-
inhibitionwould not be informative.Maximum likelihood estimation using
nonlinear optimization was used to estimate the parameters for eachmodel
in Table 1 as documented in our R package piCurve24.

We computed four statistics for each PI curve and eachmodel: the root
mean squared error (RMSE), theAkaike InformationCriterionmodified for
small sample sizes (AICc), the Bayesian Information Criterion (BIC) which
has a larger penalty for the number of observations and parameters com-
pared to the AICc, and the coefficient of determination adjusted for the
number of parameters (R2

adj) (Supplementary Methods). We scored each
model using themedianRMSEover all PI curves. TheRMSEwas computed
in two ways: on all PI data and only on the PI data with saturating or
photoinhibiting irradiance, to emphasize performance of the photoinhibi-
tion models. A model with one more parameter than another model is
generally expected to have a lower RMSE. We placed models into groups
according to their numberof parameters (3, 4, or 5) and identified themodel
in each group with the smallest median RMSE. Out of this set of three
models, we identified the bestmodel as the one with the smallest BIC on the
most PI curves. The AICc was used as a check on the assessment using BIC.
Wewinnowed the full set ofmodels to themodelwith lowest RMSE for each
number of parameters before ranking based on BIC scores because ranking
results vary according to the set ofmodels being compared.Thedifference in
RMSE for each model was compared to the best model with the same
number of parameters using a t-test. The adjusted coefficient of determi-
nation, R2

adj, was recorded for each model, but it was not used to evaluate
models.

We used a non-dimensionalized version of Eq. (3) to assist in the
interpretation of Iα = Pmax/ α and Iβ = Pmax/β:

P̂ ¼ tanh Î
� �

tanh
Iβ
Iα Î

 !γ !
; ð4Þ

where P̂ ¼ P
Pmax

, Î ¼ I
Iα

and γ = cosh2(1). With this scaling, the irra-
diance parameters, Iα and Iβ, can be interpreted by observing that
P̂ðI ¼ IαÞ = P̂ð I = Iβ) ≈ tanh(1) ≈ 0.76. Thus, the irradiance para-
meters Iα and Iβ identify the irradiance at which photosynthetic rate
is about 76% of its maximum. This is analogous to the half-saturation

constant of Michaelis–Menten models but with a different ratio; for
example, in Eq. (1c), Iα is the irradiance at which P is half of Pmax.
Other thresholds can be found to more narrowly approximate the
interval of the plateau; for example, P(1.5 Iα) = P(Iβ

γ/1.5) ≈ 0.9 Pmax.

Additional analyses described in supplement
Parameters in all models have similar interpretations (initial slope of the PI
curve, α; maximum photosynthetic rate Pmax; saturating irradiance, Iα;
photoinhibition parameter β and irradiance Iβ) but since the algebraic form
of each equation differs, numerical values obtained from the same data will
differ. We used PI curves simulated from the distribution of observed
parameters to compare parameter values estimated from different models.
Algebraic equivalences between similarly named parameters in different
models are summarized inTable S2. EachPI curvewithphotoinhibitionwas
classified according to whether it exhibited a plateau if the model with the
best fit had a plateau. Two of our models (Amirian, exp-tanh) use a fixed
value for the shape parameter (γ = cosh2(1)) which is motivated algebrai-
cally (Eq. S1) and justified statistically. We performed a statistical analysis
for light-saturating models (Table S1) on PI curves that did not exhibit
photoinhibition.

Results
PI curves in our database were obtained from samples spanning the four
seasons andmore than 60° of latitude and thus are representative of samples
frommany oceanic conditions (Fig. S1). About half (1808 of 3641) of the PI
curves in our database exhibited photoinhibition. The models we intro-
duced in this paper can capture a plateau in the PI curve, while most
previously introduced models have an absolute maximum photosynthetic
rate at a single irradiancewhenphotoinhibition is present. The vastmajority
(87% or 1574 scored by rootmean squared error (RMSE)) of PI curves with
photoinhibition were better represented by a model with a plateau com-
pared to any of themodelswithout a plateau (Table S3).A complete set of PI
parameters with error estimates for each model and each PI curve is pro-
vided in supplemental data.

The Amirian model (Eq. 3 with γ = cosh2(1)) had the smallest mean
RMSE indicating it had the best fit to the data on average among all models
with four parameters (Table 2, Fig. S3, t-tests, p < 0.001) across our database
of 1808 PI curves with photoinhibition.

Table 2 | Statistical summary of 1808 photoinhibition model fits, ordered by increasing mean root mean squared error (RMSE)

Model p All irradiance Excluding I < Iα

Median R2
adj (%) Mean RMSE Mean rRMSE (%) Median R2

adj (%) Mean RMSE Mean rRMSE (%)

Tanh-tanh-γ 5 96.5 0.144 −5.860 64.6 0.161 −8.080

Exp-tanh-γ 5 96.4 0.146 −4.620 64.2 0.163 −7.360

Fasham & Platt21 5 96.3 0.148 −3.340 57.7 0.172 −1.590

Amirian 4 96.1 0.151 0.000 59.0 0.175 0.000

Exp−tanh 4 95.9 0.156 3.320 58.5 0.180 2.920

Smith32a 4 95.7 0.161 7.360 52.7 0.194 14.72

Bannister26a 5 95.4 0.161 8.780 50.8 0.193 15.98

Prioul & Chartier25a 5 95.4 0.166 9.250 47.4 0.198 16.06

Exp-exp 4 95.6 0.162 9.170 56.4 0.193 14.67

Neale & Richerson20 4 95.5 0.164 10.62 48.7 0.198 18.52

Platt et al.16 4 95.4 0.169 13.29 47.5 0.204 21.28

Tanh−exp 4 95.4 0.164 10.69 52.1 0.197 17.92

Blackman33a 4 94.6 0.180 27.96 40.1 0.212 33.46

Baly9a 4 94.3 0.186 25.80 44.1 0.228 36.50

Peeters & Eilers28 4 93.5 0.195 34.64 37.8 0.243 49.45

Steele15 3 89.3 0.248 74.03 22.4 0.279 70.25

The number of parameters is p. Statistics are median adjusted R2 (%), mean RMSE, mean relative RMSE (rRMSE) computed over all irradiances and, in the last three columns, excluding data points in the
light limited region (I < Iα ). The best model for each number of parameters is highlighted in bold. Positive rRMSE indicates a higher RMSE than the Amirianmodel, while negative values show a reduction—
typically seen in models with additional parameters.
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A comparison of RMSE and R2
adj for the Amirian model vs. other

models illustrates the variation in gains in model performance across many
PI curves (Figs. 2, 3 and S9). Ourmodel achieved up to a 45% improvement
in R²adj relative to existing models. Models with an additional shape para-
meter showed up to a 10% improvement in R2

adj compared to Amirian
model, but these gains were statistically insignificant (t-test, p > 0.05) and
therefore those models were not judged as superior. Although the median
R²adj for most models was high (>0.9), this metric is often dominated by the
light-limited regionof thePI curve,which containsmost of theobservations.
As such, R²adj alone does not reliably reflect differences in model perfor-
mance within the photoinhibition-dominated region. When adjusted R2

and RMSE were computed excluding the light limited region of each PI
curve, the Amirian model improved the median adjusted R2 by 6.3% to
36.6% and reduced RMSE by 14.7% to 70.2% compared to existing models.
Notably, it achieved a 21.3% improvement in RMSE over the most com-
monly used model (Eq. 2), and outperformed models with greater com-
plexity, reducing RMSE by 16% relative to the Prioul & Chartier25 and
Bannister26 models, which both have one additional parameter (Table 2).

Among the models with five parameters, the Amirian model with an
extra shape parameter (tanh-tanh-γ) had the smallest root mean squared
error (RMSE,Table 2). The estimatedmeanvalue for the shapeparameter in
this model was γ = 2.30 ± 0.09 (95% CI) which is statistically indis-
tinguishable from the shape parameter used (γ = cosh2(1) ≈ 2.38) in the
four-parameter Amirian model. Serendipitously, this value for γ yields an

especially simple interpretation for β as the magnitude of the slope of
photosynthetic rate at I = Iβ (see Supplement, Fig. S2). The four parameter
Amirianmodel (withfixedshapeparameter) had the smallest BIC andAICc
for the most PI curves compared to the 3 and 5 parameter models with the
smallest RMSE (Table 3). An additional shape parameter did not sig-
nificantly enhance anymodel’s ability to capture the photoinhibition part of
the data, relative to the Amirian model.

PI curve parameters are distributed approximately log-normally and
positively correlated with a left skew in Iα and Iβ (Figs. S4 and S5). The
distribution of photoinhibition parameters (β, Iβ) shows the range of pho-
toinhibition rates and irradiances at which photoinhibition becomes
quantitatively important across the PI curves in our database (Fig. S4,
Table S4). The photoinhibition rate β is frequently less than 10% of the
photosynthetic efficiencyα indicating that thedecline inphotosynthetic rate
at high irradiance ismore gradual than the increase at low irradiance. FivePI
curves drawn using the Amirian model illustrate the range of shapes typi-
cally observed in the data (Fig. 4). Aplateau is noticeablewhen the ratio Iβ/Iα
is larger than 8, which occurred in 82% of PI curves with photoinhibition.
This ratio is symmetrically distributed around 12, indicating that a sub-
stantial plateau is typically present in the data (Fig. S4).

The dark respiration parameter, R, was not statistically different from0
for most models most of the time (50-70% of PI curves, except Steele 1962,
exp-tanh, and exp-tanh-γ, not shown). Following past practice16, we do not
interpret patterns in this parameter but do report it in our results.

Fig. 2 | Model performance (RMSE, log scale) of the best four-parameter model
(Amirian) compared to all other models (indicated in the header for each panel).
Each point corresponds to a separate PI curve. Point color corresponds to the

difference in R2
adj betweenAmirianmodel and the comparisonmodel. The 1:1 line is

shown as a black dotted line. Models are defined in Table 1, and p in each panel
indicates the number of parameters in the corresponding model.
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Our analysis of PI curves not exhibiting photoinhibition echoed the
results of a previous analysis11 (Supplemental results, Table S5) and enabled
us to compare photosynthetic efficiency and capacity across PI curves with
and without photoinhibition. We observed a statistically significant
reduction in median Pmax (44%) and a smaller reduction in median α (9%)
in PI curves when photoinhibition was present compared to PI curves that
did not exhibit photoinhibition (Fig. S6).

Discussion
Photosynthesis–irradiance (PI) curves are valuable tools for summarizing
phytoplankton photosynthetic performance, computing water-column
integrated primary production, and parameterizing phytoplankton

growth in large-scale ecosystem models. Jassby and Platt11 analyzed many
models over sub-saturating and saturating irradiances and recommended
thenowwidely used hyperbolic tangent functional form (Eq. 1a).No similar
comparative analysis for photoinhibition models has been presented in the
literature, although many models have been introduced. In our database,
about half of all PI curves exhibited photoinhibition and of these more than
three-quarters included a plateau where photosynthetic rate was approxi-
mately constant over a range of irradiances (Table S3). Most models of
photoinhibition are qualitatively inadequate as they do not include this
plateau. Photoinhibitionmodels that donot capture aplateau andPImodels
that ignore photoinhibition will typically lead to biased estimates of para-
meter values as the shape of those functions do not match the shape of the
data (Fig. 3). Here we introduced a new model with a plateau, evaluated it
against commonly used models, and showed that our new model is quan-
titatively and qualitatively superior to existingmodels (Figs. 2, 3, S7, and S9),
making it a reliable model used in estimating primary production in the
water column27.

Our analysis supports the use of a new parsimonious photoinhibition
model (Amirian model, Table 1) that only adds one parameter to the
commonly used photosynthesis–irradiance model (Eq. 1a), for a total of
four parameters (α, Pmax, β, and R). In the absence of photoinhibition
(β = 0), theAmirianmodel simplifies to themostwidelyusedmodelwithout
photoinhibition (Eq. 1a, Fig. S2). The plateau in our model separates the
light-limited and light-saturated regions of the curve from the photo-
inhibition regions, so that the interpretation of parameters Pmax and α are

Fig. 3 | Comparison of the Amirian model (Eq. 3, with γ= cosh2(1)) with all previously published models (Table 1), applied to a photosynthesis–irradiance data
sample12.Models (black lines) are sorted from best to worst based on R2 performance (shown in red), and the value of p indicates the number of parameters in each model.

Table 3 | Performance of the threemodels with lowest median
RMSE for each number of parameters, p, assessed as the
number of times (and percentage) each model had the lowest
BIC and AICc over all PI curves with photoinhibition

Model p Number of times (and percent)
each model was favored by

BIC (%) AICc (%)

Amirian 4 1009 (56) 983 (54)

tanh-tanh-γ 5 689 (38) 701 (39)

Steele15 3 110 (6) 124 (7)
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not affected by the presence of photoinhibition. Adopting our model will
allow researchers to avoid changes in parameter interpretation between
commonly used models with (Eq. 2) and without (Eq. 1a) photoinhibition.
This mathematical consistency minimizes under- or over-estimation of PI
parameters caused by switching between models with and without photo-
inhibition, reducing uncertainty in parameter estimates, which is crucial for
large-scale primary production calculations.

Analysis of empirical and simulated datasets reveals up to 40% dif-
ferences in the α parameter (the slope of the PI curve at low irradiances)
between the Jassby & Platt11 and Platt et al.16 models (Table S6).

Our new photoinhibition model significantly improves the char-
acterization of photosynthesis–irradiance (PI) curves compared to existing
formulations. Across 1808 PI curves, it consistently outperformed all other
four-parameter models, achieving the lowest mean and median RMSE
(Table 2), with statistically significant improvements confirmed via pairwise
t-tests (Fig. S3, p < 0.001). The Amirian model showed up to a 45%
improvement in R²adj relative to other models (Fig. 2). Crucially, when the
analysis focused on the light-saturated and photoinhibited portion of the
curve—where our model is intended to bring the most value—it reduced
RMSE by 21% compared to the widely used Platt et al.16 model, and by as
much as 49% compared to the Peeters & Eilers28 formulation. Even against
more complex models with additional parameters, such as Prioul &
Chartier25 and Bannister26, our model reduced RMSE by 16%. These sub-
stantial improvements demonstrate that the Amirian model not only
maintains parsimony, but also provides a more accurate and robust fra-
mework formodeling photoinhibition, especially in caseswhere a plateau in
photosynthetic rates is observed (Fig. 3, S7, and S9).

The photoinhibition parameter, β, in the Amirian model is the mag-
nitude of the slope of the PI curve at the photoinhibition irradiance, Iβ
(Fig. S2), echoing the photosynthetic efficiency, α, which is the slope at zero
irradiance. The photoinhibition irradiance, Iβ = Pmax/β, describes the irra-
diance at which photoinhibition becomes important, echoing the light-
saturation irradiance. In the widely used photoinhibition model (Eq. 2), β
describes a photodamage process starting at zero irradiance with no easy
interpretation for Iβ.

Previous work has suggested that describing photoinhibition
requires two additional parameters: one for the irradiance
where photoinhibition begins and another for the rate of
photoinhibition16,20. It is difficult to estimate the irradiance at the
start of photoinhibition in models defined with sharp thresholds

because experiments usually have large gaps between irradiance
treatments in this part of the curve and small steps in irradiance are
needed to identify the threshold irradiance. As a result, estimates of
the irradiance where photoinhibition begins are generally statistically
underpowered. In our evaluation, we found that some models with a
fifth parameter can capture more of the variability in observations
(smaller RMSE, Table 2). We rejected these five parameter models on
statistical grounds that penalize models with more parameters
(Table 3).

Our new model captures qualitative features of PI curves, notably the
plateau in photosynthetic rate when photoinhibition observed in the
experiment and a symmetry between the increase and decrease in photo-
synthetic rate with increasing irradiance. One existing photoinhibition
model captures the plateau in photosynthetic rate without a difficult to
estimate transition irradiance21. This model has an extra shape parameter
compared to the Amirian model and does not simplify to a widely used
light-saturating model in the absence of photoinhibition. We rejected this
more complex model as not parsimonious. The root mean squared errors
for this model are similar to the results for our new model and larger than
errors for other models with five parameters (Table 2). The development of
the Fasham & Platt21 model is grounded in a mechanistic description of
photodamage and is linked to interpretable rate parameters, but despite
these features it has not been widely adopted in the literature. The Eilers &
Peeters29 model incorporates symmetric increases and decreases in photo-
synthetic rate on a log irradiance scale (their Fig. 329). Our reciprocal irra-
diance formulation allowsourmodel to capture this symmetry.All six of our
new models (Table 1) have this property, but the hyperbolic tangent
function is the best model for photoinhibition, mirroring the shape found
for light saturation11 in the decrease in photosynthetic rate with
photoinhibition.

The correlation between α, Pmax, and β is dominated by a positive,
log-linear relationship (Fig. S5). Multiple processes appear to be
responsible for the correlation and residual variation. One hypothesis is
that cells acclimated to low light have high photosynthetic efficiency,
relatively low photosynthetic capacity, and show high levels of photo-
inhibition because of susceptibility to photodamage, but this is not the
dominant pattern in the data. Photosynthetic capacity and efficiency are
sometimes uncorrelated as a result of photoacclimation and sometimes
positively correlated due to changes in the metabolic processing of
photosynthetic reductant30. More work is needed to explore the causes of
variation in correlations between β and the other photosynthetic
parameters.

Photoinhibition is frequently observed in photosynthesis–irradiance
curves and models that represent the phenomenon poorly will introduce
bias into PI parameters and predictions of photosynthetic rate. Many
processes contribute to the plateau and decrease in photosynthetic rate
with increasing irradiance, including changes to the antenna and photo-
protective pigment cellular content, non-photochemical quenching,
acclimation to changing growth conditions and resources, and photo-
damage and repair of photosystem II. Severalmodels have beendeveloped
to account for the some of these processes12,14,21,29,31. These models are
valuable contributions to the study of these mechanisms, but the
complexity of photoinhibition means that they are generally incomplete
descriptions of the observedPI data. In our view thedifficulty in accurately
describing the numerous complex mechanisms means there is
considerable value in the simple phenomenological parameterization
developed here.

Data availability
Photosynthesis–irradiance data,fittedmodel parameters and other statistics
are deposited at zenodo (https://doi.org/10.5281/zenodo.16748102).Data in
Fig. 1 are identified as PI curves PI002600 and PI000375 in this database,
and PI002788 for Figs. 3 and S9.

Fig. 4 | Dimensionless Amirian model (Eq. 3, Pmax= 1, α= 1, Iα= 1) repre-
senting the range of observed PI curves with photoinhibition, illustrated using 5
quantiles (5%, 25%, 50%, 75%, 95%) of non-dimensionalized Iβ and β= 1/Iβ
values. The dimensionless value of P(I = Iβ) is tanh(1) ≈ 0.76.
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Code availability
Code for the R analysis system is available on GitHub in the package
Mohammad-Amirian/piCurve24.
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