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Glossary

Ocean observatory A collection of platforms that col-

lect data over a range of spatial and temporal scales.

Definition of the Subject and Its Importance

Ocean observatories are collections of networks of sen-

sors that are deployed to sample the ocean physics,

chemistry, and biology. The goal of these networks is

to overcome chronic undersampling of the oceans by

providing sustained measurements in space and time.

The data collected by these networks are used to

address a range of basic and applied research questions,

hindered by a lack of data. The ocean observatories

represent collections of platforms capable of collecting

data over a range of scales. The platforms include ships,

satellites, radars, and a range of Lagrangian systems.

Data from the individual platforms are aggregated by

sophisticated cyberinfrastructure software systems,

which when combined with global communications

allow for two-way communication between the shore-

side personnel and the networks that can be deployed

anywhere in the world. This two-way communication

allows the networks to be adaptively configured to

improve sampling of specific processes. The matura-

tion of these systems comes at a fortuitous time as the

oceans are increasingly showing evidence of changes in

the physics, chemistry, and biology over the last few

decades. Understanding those changes will require the

data collected by the ocean observatories.

Introduction

The Need for a Global Ocean Observing Network

The oceans cover the majority of Earth’s surface, and

despite centuries of human exploration, the oceans

remain relatively unexplored. Oceanographers have

historically collected data on the ocean and the seafloor

from ships during cruises of limited duration. This

expeditionary research approach has resulted in

major advances that span understanding global ocean

circulation, the energy associated with mesoscale cir-

culation [1–4], plate tectonics (cf. [5]), global ocean

productivity [6–8], and climate-ocean coupling

[9–11]. These and many other successes have expanded

our view of the role of ocean processes on Earth, and

have demonstrated a need for sustained sampling span-

ning temporal and spatial scales that are not effectively

carried out using ships. Filling these informational gaps

will require the oceanographic community to develop

new modes of sampling the oceans. Developing these

new approaches is urgent, as data collected over the last

few decades show that in many regions of the ocean the

physics, chemistry, and biological properties are

exhibiting significant change.

The observed changes in the oceans over the last few

decades span from local scales (kilometers) to global

effects operating over a wide range of spatial and tem-

poral scales (Fig. 1). These changes reflect both natural

cycles and increasingly reflect human activity, which

now plays a significant role in structuring the world’s

oceans. Local changes include alterations in

circulation, increased introduction of point source

concentrations of macro- and micronutrients,
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transport of pollutants to the sea, the introduction of

invasive species, associated pressures of aquaculture

efforts, and altered food web dynamics due to the

overexploitation of commercially valuable species.

These local features are embedded within regional

and global scale changes. These large-scale changes

include altered physical (temperature, salinity, sea

level height), chemical (oxygen, pH, nutrients), and

biological properties (fishing out of top predators).

Quantitatively understanding the relative role of

natural and anthropogenic forcing of the ocean is

a paramount challenge for oceanography. The urgency

will only increase as in the next 20 years as anthropo-

genic environmental impacts associated with humans

are expected to increase. This reflects the growth

human populations [12] with current projections

predicting the human population will reach ten billion

by 2040. This will be especially prominent at the

coastlines, which are predicted to show the largest

population increases [13]. This will require

a thorough understanding of ocean processes, which

will be used to improve human health and safety,

promote economic vitality, and provide the tools for

sustainable environmental stewardship. These needs

will require an improved fundamental understanding

of the oceans.

Given the need for a quantitative understanding of

the oceans, the ocean science community is fortunate

to be poised to take advantage of many technical

advances. These advances include a diverse set of new

platforms capable of carrying sensors for sustained

periods of time and the maturation of cyberinfras-

tructure tools that can link distributed individual

observing networks to form a “system of systems.”

These components will provide the foundation for an

international global ocean observing network. In this
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Ocean Observatories and Information: Building a Global Ocean Observing Network. Figure 1

A stommel diagram showing the range of spatial and temporal scales over which ocean processes operate. The figure was

constructed by Tommy Dickey and is published with his permission
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entry, we will outline the developments and, where

appropriate, provide specific examples of how the

data will be used.

Design Considerations for Building an Ocean

Observing Network

Ocean observing networks are designed to address

a specific need, which is used to define the required

sampling resolution in space and time. Defining the

appropriate scales can be a difficult problem as many

large-scale (thousands of kilometers), long period

(annual-to-interannual) processes are determined by

small-scale, short-period variations in atmospheric

forcing, and small-scale, relatively short-lived, oceanic

processes [14–18]. As highlighted by Munk [19], 95%

of the oceanic kinetic energy is associated with meso-

scale currents having time and space scales less than

about 100 days and 100 km. Other forcing factors can

operate over inertial or diurnal time scales [17]; there-

fore, a comprehensive understanding of the oceans will

require nested sampling capable of resolving the feed-

backs between processes operating over different

scales. This generally requires a multiplatform strategy

as each system samples a specific time and space

domain (Fig. 2). Once the sampling requirements

have been defined, it is possible to choose (1) the

appropriate platforms, (2) the required measurements,

(3) the data latency needs for a particular observatory,

and (4) the funds available for construction. The costs

generally increase with the flexibility of the system

(Fig. 3). Increased power on a platform allows

for greater flexibility in carrying a wider range of

sensors.

As ocean infrastructure is expensive, most large

infrastructure networks must often be able to address

a range of basic research and applied science needs to

justify the investment. Historically, basic and applied

research efforts are often treated as separate enter-

prises; however, major issues confronting the ocean

science communities reveal numerous commonalities

that reflect the chronic undersampling of the oceans.

Both applied and basic science require information on

the physical hydrography, circulation, biological, and

chemical properties; however, it is often the real-

time availability of data that defines its utility for

applied science where data are used to meet real-

time needs such as weather forecasting, search and

rescue, and national security. When available, how-

ever, real-time information has a great deal of utility as

Ocean Observatories and Information: Building a Global Ocean Observing Network. Figure 2

The time and space sampling capabilities of different ocean platforms. The different colors represent different platforms
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scientists use the information to optimize adaptive

sampling techniques.

Platforms Available for Ocean Observing Networks

A range of platforms available for building ocean

observing networks are described. Note that the list is

not exhaustive, but reflects the major pieces of infra-

structure widely used by the community today and

form the observational backbone of the major ocean

observing efforts. For this entry, we focus on physical

systems that collect data about the ocean and do not

discuss numerical models.

Ships. The primary tool for oceanographers for

centuries has been ships and despite significant

advances in new technologies (see below), ships will

remain a central piece of infrastructure for the foresee-

able future [18]. In the last decade, the range of ships

available to the oceanographic community has grown

with an expanding set of global class vessels being

complemented with smaller, capable, coastal vessels.

The increasing interdisciplinary needs have resulted in

significant upgrades in the capabilities of the ships with

improved capabilities in the dynamic positioning and

station holding, multi-beam and side-scan sonar

systems, and more complex sensors and instrumenta-

tion becoming routine tools when at sea.

Satellites. Satellites constitute the most important

oceanographic technology innovation in modern times

[19]. Satellite observations have resulted in numerous

advances in our fundamental understanding of the

oceans [20] by resolving both global features associated

with the mesoscale circulation of physical and biolog-

ical properties. It is the fundamental tool for under-

standing myriad ocean processes and land–air–sea

interactions over decadal time scales. Satellite data are

fundamental to weather and ocean state prediction.

The data have revealed new phenomena over critical

space and time scales that were previously inaccessible

using only data from in situ observing systems. Physical

parameters available from space-based sensors provide

information on ocean surface temperature, wind speed

and direction, sea surface height and topography, and

sea ice distribution and thickness. Biogeochemical

parameters are derived from ocean color radiometers

(pigment concentration, phytoplankton functional

groups, size distribution, particle concentration, col-

ored dissolved organic material). A range of methods

that include active scatterometry, microwave array

spectrometers, microwave imagers, multi-beam

Ocean Observatories and Information: Building a Global Ocean Observing Network. Figure 3

The range of cost and power for a range of ocean sampling platforms
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altimetric lidars, altimeters, and advanced gravity mis-

sions collect these observations. The coverage provided

by a satellite is dependent on its orbit. Currently most

environmental satellites are polar-orbiting, covering

the whole globe over a period of days. These

global maps can be complemented by geostationary

satellites that can map the same area of the

ocean several times a day, allowing one to resolve the

temporal changes such as tidal effects or river plumes.

These geostationary satellites are particularly impor-

tant when monitoring episodic events required for

many applied efforts such as monitoring hurricanes

and/or oil spills.

The significant time required and high cost of

deploying satellites has focused efforts on expanding

the utility of existing platforms. These approaches

include the development of new algorithms. These

new algorithms have focused on objectively defining

water masses ([21, 22], Fig. 4), deriving biological rate

processes [23, 24], estimating nutrient concentrations

[25], and mapping ocean salinity [26–28]. Algorithms

are also being developed to allow the satellites to

adaptively sample the ocean. This approach has been

demonstrated with the scientists re-tasking the satellite

to spotlight a region [29]. As flexibility in networks

increases, these approaches are likely to become more

common.

High Frequency Radar. High frequency radar is

a technology for measuring ocean surface current

velocities over hundreds of square miles simulta-

neously (Fig. 5). The systems can provide data on

approximately hourly time scales and can collect data

out to about 125 miles (200 km) from shore (Fig. 4).

The HF radar systems can resolve spatial scales of about

1–10 km, unaffected by clouds, fog, or precipitation.

This technology uses low-power transmitters and small

stationary antennas that are relatively simple to deploy.

Each site measures the radial components of the ocean

surface velocity directed toward or away from the site

[30–32] and the estimated velocity components allow

surface currents (upper meter of water column) to be

estimated [33]. These systems are cost-effective and

currently much of the coastal zone is now sampled

using this technology.

Ocean Observatories and Information: Building a Global Ocean Observing Network. Figure 4

A global map of the major ocean biomes as determined using an objective mapping algorithm [22]. The map was created

by combining sea surface temperature maps with ocean color imagery, and provides a means to discriminate the

major water masses by combining all available satellite remote sensing technologies. Each color represents a distinct

water mass
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HF radar provides a good example of a dual use

technology. For example, HF Radar measures the

movement of oceanic events like the winds in

the atmosphere provide information about where and

when weather systems occur (Fig. 5). The dynamic

movements of the ocean and atmosphere are also

used to determine where pollutants, man-made or

natural, will travel. Modern weather now casts and

forecasts generated by NOAA’s National Weather

Service depend on the thousands of critical wind mea-

surements collected worldwide each hour, mostly from

land and satellite-based sensors. In the coming decade,

coastal managers will use HF radar data to measure the

ocean current speed and direction to track plumes

(rivers, pollution, oil), assist in coast guard search and

rescue (SAR), assist in marine navigation, define ship-

ping tracks and temporary anchorages offshore ports,

and track the transport of harmful algal blooms. One

specific example is the US Coast Guard, which cur-

rently ingests surface current data from high frequency

radar sites into its SAR operations along the Mid-

Atlantic coast, which has a mature HF radar network.

It is estimated that if HF radar is deployed in all US

coastal waters would save an additional 26–45 more

lives annually and reduce the $30 M per year currently

spent on rescue flights (http://ioos.gov/library/

sarops_data_sources_uncert_nov2006.pdf).

Ocean Moorings. The modern ocean moorings grew

out of the weather stations established in the 1940s.

Since the 1960s modern buoys have enabled a wide

range of studies addressing the ocean’s role in climate,

weather as well as providing insight into the biogeo-

chemistry of the sea. Moorings provide the backbone to

many of the global ocean networks studying ocean–

atmosphere interactions and are the foundation for the

global tsunami warning system network. They will

continue to be a key element of ocean observing infra-

structure that provides high frequency fixed location

data to supplement the spatial data collected by ships,

autonomous underwater vehicles, and satellite remote

sensing by providing subsurface data.

Seafloor Cables. Scientists often require high band-

width and power for sustained periods of time.

Seafloor electro-optic cables offer potential means for

providing the sustained presence in the ocean. There

have been two general strategies when deploying

seafloor cables. Cables have been deployed off the east

and west coasts of the United States and Canada,

Hawaii, Japan, and Europe. These cables have success-

fully been used to study a wide range of topics which

include seafloor seismicity [34, 35], tsunamis [36],

seafloor dynamics [37], coastal upwelling (Fig. 6,

[38]), ecosystem productivity [39], hydrological optics

[40], ocean turbulence [41], sediment resuspension

[42, 43], gas hydrates [44], marine boundary layer

dynamics [45], bioluminescence [46, 47], and animal

swimming behavior [48].

Drifters and Floats. Passive, autonomous, Lagrang-

ian platforms have become an indispensable tool in

creating surface and subsurface maps of ocean proper-

ties. These platforms are relatively inexpensive and thus

allow thousands of these platforms to be deployed.

Surface maps of ocean currents and ocean properties

(temperature) have been collected using surface

drifters. Drifters have historically been a key tool for

oceanography as evidenced by the important works of

Benjamin Franklin [49] and Irving Langmuir [50].

Improved communications have allowed thousands of

drifters to be deployed. The drifters have evolved to

carry numerous sensors, which have allowed them

to create global maps of surface circulation at

a relatively low cost [51].

The first neutrally buoyant floats were designed to

observe subsurface currents [52]. The subsurface floats

were greatly enhanced in the early 1990s with commu-

nication capabilities [53] and now anchor the interna-

tional ARGO program, which has over 3,000 floats

deployed in the ocean (Fig. 7, http://www.argo.ucsd.

edu/). The subsurface ARGO network has been

a critical tool for oceanography [55] and to date

has resulted in over 750 publications since 1998

(http://www.argo.ucsd.edu/Bibliography.html). Publi-

cations span from mapping global ocean hydrography,

trended changes in ocean properties, and ocean

biogeochemistry.

Gliders. Rudnick et al. [56] provided a detailed

overview of glider systems for scientific uses. Gliders

are a type of autonomous underwater vehicle that use

small changes in buoyancy in conjunction with wings

to convert vertical motion to horizontal motion, and

thereby propel itself forward with very low-power

consumption. These are similar in concept to profiling

floats (see above) with the exception of the wings.

Gliders follow a sawtooth path though the water,
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providing data on large temporal and spatial scales.

They navigate with the help of periodic surface GPS

fixes, pressure sensors, tilt sensors, and magnetic com-

passes. Using buoyancy-based propulsion, gliders have

a significant range and duration, with missions lasting

over half a year and over 3,500 km of range. There are

currently three glider types [57–59] being used

throughout the world’s oceans (Fig. 8). Although the

majority of gliders presently run on batteries, thermal-

powered gliders, which take advantage of thermal

gradients in the ocean, are being developed [59].

Gliders vary in the pressure, they are able to withstand

but taken together, and they effectively sample waters

depths from 10 to 3,300 m. The duration of the glider

mission is variable and depends on (1) the type of

battery used, (2) the number of sensors the gliders

carry, and (3) the water column depths in which the

glider is operating. Because these vehicles are designed

for duration, they have limited power for sensors. The

standard measurements currently on gliders include

temperature, salinity, chlorophyll fluorescence, optical

backscatter, bottom depth, and occasionally acoustic

Doppler velocity and backscatter. By examining dis-

placement between surface fixes, the vertically averaged

absolute velocity can also be determined. The utility of

gliders have demonstrated their value in collecting high

resolution spatial datasets [60–67].

Propeller-driven AUVs are powered by batteries or

fuel cells and can operate in water as deep as 6,000 m.

AUVs can navigate by various means; inside a net of

acoustic beacons, by position relative to a surface ref-

erence ship, or when operating completely autono-

mously, the AUV will surface and take its own GPS

fix. Like gliders, AUVs relay data and mission informa-

tion to shore via satellite. Between position fixes and for

precise maneuvering, inertial navigation systems are

Ocean Observatories and Information: Building a Global Ocean Observing Network. Figure 6

Example of data collected by the Long term Ecosystem Observatory (LEO) which is located 5 km offshore the coast of New

Jersey and is linked to shoreside laboratories via an electro-optical seafloor cable. (a) A profiling instrument node before

being mounted to the LEO cable. (b) The shore side control center from where the profiler and instruments were

controlled. The data was sent to shore in real time to scientists via the LEO cable. (c) Data collected during 60 h while

continuously profiling the instrument package. The short time series represents over 600 vertical profiles. The data

represents the absorption at 440 nm collected with a WetLabs absorption/attenuation meter. The high turbidity water

(red) was associated with tidal outflows and with coastal upwelling
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Ocean Observatories and Information: Building a Global Ocean Observing Network. Figure 7

The global distribution of ARGO profiling floats on March 23,2011. The floats are outfitted with sensors that measure

temperature and salinity. A smaller number are outfitted with biogeochemical sensors [54]

Ocean Observatories and Information: Building a Global Ocean Observing Network. Figure 8

Gliders are operated by individual laboratories and allow small groups to occupy a global presence at relatively low cost

[29]. The figure shows the glider deployments conducted by Rutgers Coastal Ocean Observation Laboratory from

October 2003 until February 2011. The missions represent almost 4,000 days at sea and the Rutgers glider fleet has

flown 93,000 km underwater. Currently, there are over a dozen laboratories located throughout the world who maintain

a similar sustained global glider presence at sea
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often available onboard the AUV to measure the accel-

eration of the vehicle and, combined with Doppler

velocity technology, is used to measure rate of travel.

A pressure sensor measures the vertical position. AUVs,

unlike gliders, can move against most currents nomi-

nally at 3–5 knots, and, therefore, can systematically

and synoptically survey a particular line, area, and/or

volume. This is particularly important for bottom

surveys and operation near the coastline in areas haz-

ardous to ships and small craft. The endurance of AUV

systems depends on the size of the vehicle as well as the

power consumption, but range from 6 to 40 h of

operation under a single charge with ranges

of 70–240 km over that period. The sensor payload is

also dependent on the size of the vehicle (and battery

capacity), with the standard array of sensors measur-

ing, temperature, salinity, chlorophyll fluorescence,

optical backscatter, bottom depth, and acoustic Dopp-

ler velocity and backscatter. Because of the additional

power capacity of AUVs, numerous sensor suites have

been integrated into AUVs and remain the primary

autonomous platform for sensor development.

Hundreds of different AUVs have been designed over

the past 20 or so years. Blackwell et al. [68] provides an

overview of the historical development of these

vehicles.

Information Systems for Ocean Observatories

While the range of technologies available to

oceanographers has been increasing over the last sev-

eral decades, it is the availability of global communica-

tions and information technology that will allow these

technologies to transform ocean sciences. Oceanogra-

phers have conducted experiments as either individuals

or small groups within a single science focus at any

given time; however, the broad scientific and civil

demands for multidisciplinary and interdisciplinary

research coupled with exponential growth in informa-

tion technology are transforming oceanography. This

history of working in small groups has resulted in the

traditional data-centric cyberinfrastructure strategy,

where typically a central data management system

ingests data and serves them to users on a query basis.

This approach is not sufficient to deal with the range of

challenges that face ocean sciences.

Given this potential, the community is now dedi-

cated to building the cyberinfrastructure that will be

central to any global integrated ocean observing

system. A modern cyberinfrastructure backbone will

allow globally distributed scientists to operate as

a community by aggregating data from individually

deployed instruments for any experimental effort. If

realized, this would allow anybody with access to the

internet to utilize the global array of sensors to study

any ocean process of interest.

Given the potential, ocean sciences are increasingly

focused on building a system that will provide

a comprehensive set of capabilities. Cyberinfras-

tructure systems must provide a comprehensive set of

tools that include (1) end-to-end data preservation and

access, (2) end-to-end, human-to-machine, and

machine-to-machine control of how data are collected

and analyzed, (3) direct, closed loop interaction of

models with the data acquisition process, (4) virtual

collaborations created on demand to drive data-model

coupling and share ocean observatory resources (e.g.,

instruments, networks, computing, storage and

workflows), (5) end-to-end preservation of the ocean

observatory process and its outcomes, and (6) automa-

tion of the planning and prosecution of observational

programs. Additionally the cyberinfrastructure systems

must provide the required backgroundmessaging, gov-

ernance, and service frameworks that facilitate interac-

tion in a shared environment, similar to the role of the

operating system on a computer. Such a system would

provide a suite of tools capable of serving both basic

and applied science simultaneously.

The potential of an interactive social network for

the ocean sciences is in its infancy and the community

is in the process of development and is conducting pilot

experiments. One such example is the NSF Ocean

Observatory Initiative (OOI), which has focused

significant effort on developing a sophisticated

cyberinfrastructure, that will link ocean observatories,

computation, modeling, storage, and network

infrastructure into a coherent system-of-systems. The

software is also developing a web-based social network

enabled by real-time visualization and access to model

outputs to allow for adaptive sampling science.

One such example was a field experiment

conducted in 2009, that allowed a distributed commu-

nity of scientists to assess how well the software could

aggregate data from ships, autonomous underwater

vehicles (AUVs), shore-based radars, and satellites
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and to make it available to ocean forecast models.

Scientists used the model forecasts to guide future

(next 24 h) glider missions which then were used to

optimize data collection for model data assimilation,

which demonstrated the feasibility of two-way interac-

tivity between the sensor web and predictive models.

The sensor web included the re-tasking of a satellite.

The software allowed the distributed community to

adaptively modify the in situ observation network

throughout the experiment [29]. The net result was

a science driven machine-to-machine interactive loop

(Fig. 9). These machine networks will increasingly

become standard tools for the ocean science commu-

nity in the future.

As observatories consist of a series individual com-

ponents that are linked to form a coherent sampling

system, an often underemphasized, yet critical need is

the ability to register to all components to a common

time stamp. The time stamp functionality in the sensor

network is necessary to compare the output of one

sensor to another. This is not a trivial when sensors

are dispersed geographically and the data from sensors

need to be integrated with external datasets. The accu-

racy required is a function of the process being studied

and the length of the time series to be collected. For

example, seismic studies require time accuracy on the

order of milliseconds, acoustic tomography of 1 ms and
studies of phytoplankton growth rates require data on

the time scale of hours. Additionally, avoiding drift for

temporal time series will increasingly become critical as

sustained time series become the norm for oceanogra-

phy. Fortunately, the ability to register time accurately

is increasingly improving. A dramatic example is the

evolution of small low-power atomic clocks. Atomic

clocks offer the frequency stability of one part in ten

billion, which is equivalent to gaining or losing

1 s every 300 years. These technical developments are

being powered by the evolution of Micro Electro

Mechanical Systems (MEMS) chip technologies that

can produce clocks with a volume of less than 0.1 cm3

and consume power on the milli-watt scale. These

advances will enable atomic clocks to be operated on

batteries and could be integrated throughout the

individual components of the ocean observatories.

The potential of cyberinfrastructure tools, such as

described above, is dependent on the real-time avail-

ability of data; fortunately global communications have

improved dramatically over the last few decades. In the

early 1990s, the primary mode of communication from

ship to shore was via satellite voice calls. This improved

over the next decade as ship-based science was

provided with limited email communication. Commu-

nications have continued to improve and now provide

sufficient bandwidth to allow for video-transmission at

hundreds of kilobits per second (http://hiseasnet.ucsd.

edu/). These improvements are changing the type of

science that ships conduct as real-time data allow

scientists to adaptively sample the ocean. Addition-

ally, the launch of low Earth orbit satellite communi-

cation systems have allowed for global

communication and enabled rapidly evolving capabil-

ities for communications to autonomous platforms.

The communications have improved from one-way

communications with data transmission limited to

about 16,000 bits/day to global two-way communica-

tions at a rate of 2,400 bits/s.

Future Directions

The ocean science community will over the next decade

construct a global ocean observing network by com-

bining a diverse range of platforms. The multiplatform

networks will allow scientists to sample over a wide

range of time and space scales and the availability of

real-time data transmission will allow for adaptive

sampling. The development of a robust cyberinfras-

tructure will encourage distributed teams of scientists

to conduct both applied and basic research. The

research will allow the community to understand the

present and future status of the oceans.
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